• Title/Summary/Keyword: 빗방울 제거

Search Result 2, Processing Time 0.016 seconds

Raindrop Removal and Background Information Recovery in Coastal Wave Video Imagery using Generative Adversarial Networks (적대적생성신경망을 이용한 연안 파랑 비디오 영상에서의 빗방울 제거 및 배경 정보 복원)

  • Huh, Dong;Kim, Jaeil;Kim, Jinah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.5
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose a video enhancement method using generative adversarial networks to remove raindrops and restore the background information on the removed region in the coastal wave video imagery distorted by raindrops during rainfall. Two experimental models are implemented: Pix2Pix network widely used for image-to-image translation and Attentive GAN, which is currently performing well for raindrop removal on a single images. The models are trained with a public dataset of paired natural images with and without raindrops and the trained models are evaluated their performance of raindrop removal and background information recovery of rainwater distortion of coastal wave video imagery. In order to improve the performance, we have acquired paired video dataset with and without raindrops at the real coast and conducted transfer learning to the pre-trained models with those new dataset. The performance of fine-tuned models is improved by comparing the results from pre-trained models. The performance is evaluated using the peak signal-to-noise ratio and structural similarity index and the fine-tuned Pix2Pix network by transfer learning shows the best performance to reconstruct distorted coastal wave video imagery by raindrops.

강우센서에서 생성된 강우정보를 이용한 선형회귀분석과 대역 통과 필터링 분석간의 정확도 비교

  • Kim, Yeong-Gon;Lee, Seok-Ho;Kim, Byeong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.172-172
    • /
    • 2017
  • 본 연구는 차량의 AW(AutoWiping) 기능을 위해 장착된 강우센서를 이용하여 강우정보를 생산하는 기술을 개발하고자 하였다. AW(AutoWiping) 기능이란 차량 앞창(Windshield)에 빗방울이 맺히게 되면 광신호의 산란으로 인해 수광부에 들어오는 감소되는 광신호의 정도에 따라 차량 와이퍼의 속도를 결정해 주는 기능이다. 빗방울이 많이 맺힐수록 광신호는 감소되며 와이퍼는 더 빠른 속도로 작동을 하게 된다. 여기서 강우센서가 강우량이 많으면 감소된 광신호 데이터를 표출하는 현상을 이용하여 강우정보를 생산한다. 강우센서는 총 8개의 채널로 이루어져있고, 초당 250개의 광신호 데이터를 수집하며, 10분이면 약 120만 개의 데이터가 생산되게 된다. 이 대량의 데이터에서 정확한 강우량을 산출하기 위해 강우센서의 초기값과 와이퍼 이동시 발생하는 순간 이상치를 제거해야 한다. 하지만 일일이 수백만 개 이상의 데이터에서 모든 이상치를 제거하는 작업은 불가능하다. 따라서 이상치를 포함한 회귀 분석 방법을 연구하였고, 인공강우 발생기를 이용하여 광신호를 강우량으로 환산하는 2가지 회귀식이 유도되었다. 이들은 각각 이상치를 모두 포함시켜 독립변수(광신호)에 따라 종속변수(강우량)의 값이 변화하는 관계를 나타내는 선형회귀분석(model 1), 임계치를 정하여 일정 이상치가 제거된 신호만 통과시키는 대역통과 필터링 분석(model 2)으로 유도된 회귀식을 실강우에 회귀식을 적용하여 정확도를 분석하였다.

  • PDF