• Title/Summary/Keyword: 빗물저수조

Search Result 2, Processing Time 0.019 seconds

A study on the application and construction of a rainwater storage tank in apartment complex (공동주택단지에서의 빗물저수조 설치 및 활용방안 연구)

  • Lee, Won-Yeul;Jeong, Sang-Min;Shin, Duck;Lee, Chuel-Hun;Han, Moo-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.165-171
    • /
    • 2005
  • Nowadays, a source of all water, which has been spent by a lot of people, is the rainwater The rainwater is directly relating human being' life. According to how to use rainwater. human being' life is abundant or poor. Due to the lack of underground filtration quantity, the water circulation of the city is discontinued and the underground ecosystem is destroyed. This study suggest that the unused underground space of building and temporary structure can be used into rainwater storage tank in the facility to use rainwater. Moreover, in this study, while the building is constructed, It is showed that the water used in construction can be replaced in the rainwater.

Design and Operation of the Rainwater-Greywater Hybrid System : SNU No. 39 Building (빗물-저농도 오수 하이브리드 시스템의 설계 및 운전 평가 : 서울대 39동)

  • Shim, In-tae;Park, Hyun-ju;Kim, Tschung-il;Jung, Sung-un;Han, Moo-young;Namkung, Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.676-682
    • /
    • 2016
  • In this study, rainwater-greywater hybrid system was installed and operated for 1 year in order to evaluate its water quantity, water quality, and economic efficiency in building no. 39. This system was expected to overcome each disadvantages of and maximize each advantages. Low-greywater that was washed up from shower room was treated by MBR (Membrane Bioreactor) and ozone oxidation. Rainwater that was collected from the rooftop was stored in a reservoir, and then transferred to the storage tank that was mixed with treated greywater. After 1 year operating in building no. 39, rainwater and greywater was used to supply $2,599m^3$ of toilet flushing water. In terms of water quality, rainwater was satisfied far the greywater reuse standards except for E.coli. Moreover, low greywater quality was acceptable except for E. coli, BOD, SS, and turbidity. In addition, economic analysis was obtained from benefit-cost ratio (B/C) with 1.11. It implies that the feasibility of the project was reasonable. Furthermore, various research and policy to improve the economic efficiency of water recycling facilities is required to expand the use of water recycling facilities.