• Title/Summary/Keyword: 빈산소 수괴

Search Result 43, Processing Time 0.033 seconds

Physicochemical Characteristics of Seawater in Gamak Bay for a Period of Hypoxic Water Mass Disappearance (가막만 빈산소 수괴 소멸기의 물리화학적 특성)

  • Kim, Jeong-Bae;Park, Jung-Im;Jung, Choon-Goo;Choi, Woo-Jeung;Lee, Won-Chan;Lee, Yong-Hwa
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.241-248
    • /
    • 2010
  • Hypoxic(oxygen-deficient) water masses are a key threat to the ecosystem of shallow marine coastal areas worldwide. The phenomena of hypoxia occurred at Gamak Bay, on the southeast coast of Korea, in late June 2007. In this paper, the physicochemical characteristics of seawater were surveyed for a period of hypoxic water mass disappearance. The hypoxic water mass was located between Sunso and the northwestern area of the inner bay. The dissolved oxygen(DO) concentrations of surface and bottom water were $1.3mgL^{-1}$ and less than $2mgL^{-1}$, respectively, in the hypoxic water masses, and $4.5{\sim}6.8mgL^{-1}$ and $3.8{\sim}6.0mgL^{-1}$ at the other oxygen-rich sample sites, respectively. Chlorophyll a concentrations were $4.9{\sim}25.3{\mu}gL^{-1}$ at the surface, $2.3{\sim}23.1{\mu}gL^{-1}$ in the middle, and $1.9{\sim}9.0{\mu}gL^{-1}$ at the bottom of the hypoxic water masses. When the hypoxic water mass appeared in Gamak Bay, it formed three different vertical types. The first type occurred throughout the water depth around Sunso. The second type developed from the bottom. The third type of hypoxic water mass was formed in the middle water layer when the inversion of water temperature occurred. The third type of phenomena appeared at only St. 9, St. 14 and St. 21 sites near the Hodo coast. Aquatic surface respiration of bottom-dwelling fishes such as the oriental goby(Acanthogobius flavimanus) was observed and many crustaceans were seen along the adjacent shore of the hypoxic water mass area. About 3,000 oriental gobies as well as many crustaceans died due to this event in Gamak Bay. The results of this study could provide fundamental data for the mechanism of hypoxic water masses in Gamak Bay.

The Characteristics of Oxygen Deficient Water Mass in Gamak Bay (가막만 빈산소 수괴의 특성)

  • Kim, Jeong-Bae;Lee, Sang-Yong;Yu, Jun;Choi, Yang-Ho;Jung, Chang-Su;Lee, Pil-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.216-224
    • /
    • 2006
  • To clarify the formation process and characteristics of oxygen deficient water mass in Gamak Bay, oxygen deficiency was weekly observed from 17 June to 12 September 2005. Surface water temperature was significantly lower in the outer bay than in the inner bay, whereas the bottom water temperature was higher in the central area of bay than in the outer and inner bay. The vertical stratification of water mass was strongly formed during the period, and thermocline was observed between 3 and 5m deep. The oxygen deficiency in the bottom layer began to appear at early July in the inner bay and gradually spread to the center area of the bay in early August. The mean transparency and light attenuation coefficient($K_d$) in water mass was 4.0m and 0.47, respectively. Average concentrations of nutrient and chlorophyll ${\alpha}$ in the bottom layer were significantly higher than those in surface, and those concentrations were significantly higher in the inner bay than in the outer bay. During the formation of oxygen deficiency in the bottom layer, oxygen penetration depth in the bottom sediment were extremely shallow, and oxygen consumption rate in the bottom sediment were lower than that in the area where oxygen deficient water mass disappeared. Dissolved oxygen concentrations in the bottom layer are negatively correlated with nutrient concentrations, whereas those in the surface layer did not show a significant relationship with nutrient concentrations. Elevated loss of oxygen in the bottom water mass was attributed to the increase of the oxygen consumption rates in sediments and the decomposition of organic matter by microorganism.

  • PDF

Occurrence and Variation of Oxygen Deficient Water Mass in the Namdae Stream Estuary, Yangyang, Korea (양양 남대천 하구의 빈산소 수괴 출현과 변동)

  • Kwon, Kee-Young;Lee, Yong-Hwa;Shim, Jeong-Min;Lee, Pil-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2010
  • The occurrence and variation of oxygen deficient water mass (ODW) in Namdae stream estuary, Yangyang were studied. Field observations for water properties and sediment environments were conducted at 5 stations of the estuary from April 2008 to November 2008. The coastal sandbar is developed at the estuary mouth, and there is a pool between the estuary mouth and about 2.3 km upstream of the estuary. The pool is relatively deep and narrow compared to riverbed of the estuary. The ODW was observed continuously in the pool from May to October. The ODW extends vertically up to 2 m depth in August, and maximum length of the ODW were about 2.3 km. Mean concentration of ignition loss (IL) and acid volatile sulfide (AVS) of sediment was 7.5~9.0%, $0.282{\sim}1.106\;mg/g{\cdot}dry$ wt, respectively. Ammonium concentration in the bottom layer during formation period of the halocline and the ODW was 4~23 times higher than that of surface layer. ODW was initiated by the introduction of seawater into bottom of the estuary pool to make a strong halocline, and then decomposition of organic matter within sediment accelerated the formation of the ODW.

Development of a Field Oxygenation Device and Its Practice in the Oxygen Depleted Water Mass (빈산소 수괴해역 용존산소 환경개선장치 개발과 현장 적용)

  • Lee, Yong-Hwa;Kim, Young-Suk;Shim, Jeong-Min;Kwon, Kee-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.339-344
    • /
    • 2010
  • Oxygen depleted water mass can damage aquatic animals not only in direct way but also in indirect way by generating toxic substances including occurrence of hydrogen sulfide and ammonia which are also highly detrimental to animal life in the water mass. An oxygen dissolution device was developed, which makes turnover of the oxygen rich (over 20 mg/L) surface water down to the bottom where hypoxia is evident and tested the device in terms of oxygen recovery in the oxygen depleted bottom water. the device with turnover rates of $3.6\;m^2$/min at the liquid oxygen injection rate of 48~26.3 L/min could recover dissolved oxygen level to 7~25 mg/L at depth 7 m to lead to the dissolution level of over 90% by the supply of liquid oxygen. The running advantage of the device is that it does not require any auxiliary tank and higher energy for operation. Therefore, it can be highly useful device to relieve damages to the farmed animals in the oxygen depleted waters.

Numerical Simulation of the Formation of Oxygen Deficient Water-masses in Jinhae Bay (진해만의 빈산소 수괴 형성에 관한 수치실험)

  • CHOI Woo-Jeung;PARK Chung-Kill;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.413-433
    • /
    • 1994
  • Jinhae Bay once was a productive area of fisheries. It is, however, now notorious for its red tides; and oxygen deficient water-masses extensively develop at present in summer. Therefore the shellfish production of the bay has been decreasing and mass mortality often occurs. Under these circumstances, the three-dimensional numerical hydrodynamic and the material cycle models, which were developed by the Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the oxygen depletion and also to evaluate the environment capacity for the reception of pollutant loads without dissolved oxygen depletion. In field surveys, oxygen deficient water-masses were formed with concentrations of below 2.0mg/l at the bottom layer in Masan Bay and the western part of Jinhae Bay during the summer. Current directions, computed by the $M_2$ constituent, were mainly toward the western part of Jinhae Bay during flood flows and in opposite directions during ebb flows. Tidal currents velocities during the ebb tide were stronger than that of the flood tide. The comparision between the simulated and observed tidal ellipses showed fairly good agreement. The residual currents, which were obtained by averaging the simulated tidal currents over 1 tidal cycle, showed the presence of counterclockwise eddies in the central part of Jinhae Bay. Density driven currents were generated southward at surface and northward at the bottom in Masan Bay and Jindong Bay, where the fresh water of rivers entered. The material cycle model was calibrated with the data surveyed in the field of the study area from June to July, 1992. The calibrated results are in fairly good agreement with measured values within relative error of $28\%$. The simulated dissolved oxygen distributions of bottom layer were relatively high with the concentration of $6.0{\sim}8.0mg/l$ at the boundaries, but an oxygen deficient water-masses were formed within the concentration of 2.0mg/l at the inner part of Masan Bay and the western part of Jinhae Bay. The results of sensitivity analyses showed that sediment oxygen demand(SOD) was one of the most important influence on the formation of oxygen depletion. Therefore, to control the oxygen deficient water-masses and to conserve the coastal environment, it is an effective method to reduce the SOD by improving the polluted sediment. As the results of simulations, in Masan Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $50\%$ reduction in input COD loads from Masan basin and $70\%$ reduction in SOD was conducted. In the western part of Jinhae Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $95\%$ reduction in SOD and $90\%$ reduction in culturing ground fecal loads was conducted.

  • PDF

Prediction in Dissolved Oxygen Concentration and Occurrence of Hypoxia Water Mass in Jinhae Bay Based on Machine Learning Model (기계학습 모형 기반 진해만 용존산소농도 및 빈산소수괴 발생 예측)

  • Park, Seongsik;Kim, Byeong Kuk;Kim, Kyunghoi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.47-57
    • /
    • 2022
  • We carried out studies on prediction in concentration of dissolved oxygen (DO) with LSTM model and prediction in occurrence of hypoxia water mass (HWM) with decision tree. As results of study on prediction in DO concentration, a large number of Hidden node caused high complexity of model and required enough Epoch. And it was high accuracy in long Sequence length as prediction time step increased. The results of prediction in occurrence of HWM showed that the accuracy of nonHWM case was 66.1% in 30 day prediction, it was higher than 37.5% of HWM case. The reason is that the decision tree might overestimate DO concentration.

Community Structure of the Macrobenthos in the Soft Bottom of Yongsan River Estuary, Korea 2. The Occurrence of Summer Hypoxia and Benthic Community (영산강 하구역의 연성저질에 서식하는 저서동물 군집 2. 여름철 빈산소 수괴의 출현과 저서동물 분포)

  • LIM Hyun-Sig;PARK Kyung-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.343-352
    • /
    • 1998
  • The relationship between summer hypoxia in bottom water layer and benthic community structure was discussed at forty sampling stations in semi-enclosed Youngsan River estuarine bay, Korea. The oxygen deficient layer less than $2.0 mg/\ell$ was widely developed in the inner estuarine stations in summer due to the summer stratification. A total of 141 species was occurred, with a mean density of $1,923 ind./m^2$ and biomass of $79.44\;g/m^2$ in summer season. The species number was significantly increased with the increment of the bottom dissolved oxygen, whereas density and biomass were partially correlated within the low oxygen level of $2.0\;mg/\ell$. These results imply that benthic community structures are affected by bottom oxygen depletion in summer. Cluster analysis showed that the benthic community could be classified into three station groups. These station groups from the species composition coincided with the groups based on the environmental factors. This fact suggests that the overall spatial distribution of macrozoobenthos in Youngsan River estuarine bay in summer should be controlled by the summer hypoxia and clay content of the area. Group-I was located the innermost estunrine bay from Mokpo Harbour to near the dike, where summer hypoxia was developed and one bivalve Theora fragilis, two polychaetes, Tharyx sp. and Lumbrineris longifolia were dominated. Group-II, the central transitory area of the estuarine bay between two another stational groups, where two bivalves Theora fragilis, Raetellops pulchella and a polychaete Tharyx sp. predominated with relatively low density compared to that of Group-I. Group-III, the mouth part of the estunrine bay exposed to the open sea, where a polychaetes Poecilochaetus johnsoni and a bivalve Yoldia Johanni predominated.

  • PDF

빈산소에 따른 넙치, Paralichthys olivaceus의 반응 및 회복

  • 강주찬;지정훈;조규석
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.10a
    • /
    • pp.219-220
    • /
    • 2000
  • 물의 유동이 작고, 폐쇄성이 강한 천연해역, 더구나 유기물 혹은 질소, 인등의 영양 염류농도가 높은 부영양화 해역에서는 여름부터 가을에 걸친 성충기에 빈산소수괴가 종종 관찰된다. 천연해역의 빈산소 형성은 직접 해양동물에 악영향을 미치게 되며, 극단적인 경우에는 집단사망을 일으키거나 생리적 장해를 받게된다 (Fenchel and Riedl, 1970; Jorgensen, 1980; Bestwick et al., 1989). (중략)

  • PDF

Ecology of the Macrobenthic Community in Chinhae Bay, Korea -1. Benthic Environment- (진해만 저서동물의 군집생태 -1. 저서환경-)

  • LIM Hyun Sig;HONG Jae-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.200-214
    • /
    • 1994
  • In order to clarify the benthic environmental properties as a part of a study on the macrobenthic community in the Chinhae Bay System, water temperature, salinity and dissolved oxygen (DO) in surface and bottom water layers, mean grain size (${\phi}$) and sediment organic carborn (SOC) in surface sediment were analyzed at twelve stations during the period from June 1987 to May 1990. A high sediment organic carbon and hypoxic condition in bottom water due to the development of summer stratification and fine sediment texture toward the inner bay were important environmental characteristics of Chinhae Bay. Hypoxic conditions began to develop in the inner bay from May, and gradually spread toward the outer bay in summer with a peak in September when half the bay was affected by this oxygen deficiency. Recovery from this hypoxic condition in the bottom layer was observed from the beginning of autumn together with a disappearance of the summer stratification. Principal component analyses were carried out from the following five environmental variables:mean water temperature, salinity, dissolved oxygen in the bottom layer and mean grain size, sediment organic carbon in surface sediment. The twelve stations were classified into four areal groups based on the analyses. The division of the areal groups had high correlations to the sediment organic carbon content.

  • PDF