• Title/Summary/Keyword: 빈도비 모델

Search Result 298, Processing Time 0.045 seconds

lNon-Stationary Frequency Analysis of Future Extreme Rainfall over the Korean Peninsula (비정상성을 고려한 한반도 미래 극치강우 빈도해석)

  • Jeong, Min Su;Yun, Seon-Gwon;Oak, Young Suk;Lee, Young Sub;Jung, Jae Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.162-162
    • /
    • 2018
  • 지난 100년간(1996~2005년)의 전지구 평균 온도는 $0.74^{\circ}C$ 상승하였고 이러한 온도 상승은 온실효과의 영향으로 파악되고 있으며, 장래에는 이러한 상승 경향이 가속화되어 진행될 것으로 예측되고 있다(IPCC 2014; Baek et al 2011). 전지구 기온 상승은 극한 해수면 증가 및 호우 빈도와 평균 강수량 증가로 나타나며, 이로 인한 상당한 홍수 및 침수피해 가능성이 나타나고 있어 이에 대한 선제적 대응책 마련이 필요한 실정이다. 본 연구에서는 GCMs 모델별 연 최대 일 강수량을 추출하여 정상성 및 비정상성 빈도분석을 수행하고 빈도별 확률강수량을 산정하였다. 정상성 및 비정상성 분석을 위해 모델별 연최대치 일강우 자료를 산정하고, 모델별 경향성 검정을 수행하였다. 또한 각 모델별로 2021년부터 30년을 기준으로 1개년씩 자료이동을 통해 30세트를 구성하고, 각 세트별 80mm 이상의 강우의 평균 발생횟수 및 여름철(6월~9월) 평균 강우 총량의 산정을 통해 순위 도출에 적용하였다. 경향성 검정 및 순위도출 결과를 토대로 8개 GCMs 자료 중에서 4개의 GCMs를 선정하였고, 시나리오별 세트구성에 따른 연 최대 일 강우량의 평균 및 Gumbel 분포형의 위치 및 축척매개변수를 산정하였으며, 이를 토대로 서울지역을 대상으로 위치 및 축척 매개변수 추정에 따른 비정상성 빈도분석을 수행하였다.

  • PDF

The change of rainfall quantiles calculated with artificial neural network model from RCP4.5 climate change scenario (RCP4.5 기후변화 시나리오와 인공신경망을 이용한 우리나라 확률강우량의 변화)

  • Lee, Joohyung;Heo, Jun-Haeng;Kim, Gi Joo;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.130-130
    • /
    • 2022
  • 기후변화로 인한 기상이변 현상으로 폭우와 홍수 등 수문학적 극치 사상의 출현 빈도가 잦아지고 있다. 따라서 이러한 기상이변 현상에 적응하기 위하여 보다 정확한 확률강우량 측정의 필요성이 증가하고 있다. 대장 지점의 미래 확률강우량 계산을 위해선 기후변화 시나리오의 비정상성을 고려해야 한다. 본 연구는 비정상적인 미래 기후에서 확률강우량이 어떻게 변화하는지 측정하는 것을 목표로 한다. Representative Concentration Pathway (RCP4.5)에 따른 우리나라의 확률강우량 계산에 인공신경망을 포함한 정상성, 비정상성 확률강우량 산정 모델들이 사용되었다. 지점빈도해석(AFA), 홍수지수법(IFM), 모분포홍수지수법(PIF), 인공신경망을 이용한 Quantile & Parameter regression technique(QRT & PRT)이 정상성 자료에 대해 확률강우량을 계산하는 모델로 사용되었으며, 비정상성 자료에 대해서는 비정상성 지점빈도해석(NS-AFA), 비정상성 홍수지수법(NS-IFM), 비정상성 모분포홍수지수법(NS-PIF), 인공신경망을 사용한 비정상성 Quantile & Parameter regression technique(NS-QRT & NS-PRT)이 사용되었다. Rescaled Akaike information criterion(rAIC)를 사용한 불확실성 분석과 적합도 검정을 통해서 generalized extreme value(GEV) 분포형 모델이 정상성 및 비정상성 확률강우량 산정에 가장 적합한 모델로 선정되었다. 이후, 관측자료가 GEV(0,0,0)을 따르고 시나리오 자료가 GEV(1,0,0)을 따르는 지점들을 선택하여 미래의 확률강우량 변화를 추정하였다. 각 빈도해석 모델들은 몬테카를로 시뮬레이션을 통해 bias, relative bias(Rbias), root mean square error(RMSE), relative root mean square error(RRMSE)를 바탕으로 측정하여 정확도를 계산하였으며 그 결과 QRT와 NS-QRT가 각각 정상성과 비정상성 자료로부터 가장 정확하게 확률강우량을 계산하였다. 본 연구를 통해 향후 기후변화의 영향으로 확률강우량이 증가할 것으로 예상되며, 비정상성을 고려한 빈도분석 또한 필요함을 제안하였다.

  • PDF

Mixture distribution based nonstationary frequency model using climate variables (기후 변수를 이용한 혼합분포 기반 비정상성 빈도 모델)

  • Choi, Hong-Geun;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.338-338
    • /
    • 2019
  • 설계강우량 산정시, 일반적으로 극치자료를 활용하여 정상성 가정하에 빈도해석을 수행하고 있다. 그러나 종종 정상성으로 가정했던 기존 극치강우자료가 정상성 빈도해석 모형에서 효과적으로 모델링되지 않는 비정상성 특성을 나타내고 있다. 또한, 대부분의 극치강우 분포는 해마다 다른 규모로 발생하는 홍수와 태풍 등의 강우요인으로 인해 두 개의 첨두를 갖는 혼합분포 형태를 보인다. 이에 본 연구에서는 혼합분포 기반 비정상성 빈도모델(mixture distribution based nonstationary frequency model, MDNF)을 제시하였다. 제안된 모형의 입력자료로 기후변수(e.g. SSTs and SLPs)를 사용하여 두 개의 분포형으로 구성되는 극치강우의 혼합비(mixing ratio)에 대한 영향을 분석하였으며, 극치강우 패턴이 특정 기후변수의 영향을 받는 것을 확인하였다. 최종적으로 Bayesian 기법을 MDNF 모형에 연계하여 각 첨두에 해당하는 분포형의 매개변수들에 대한 불확실성 구간을 정량적으로 제시하였다. 본 연구를 통해 강우 패턴의 변동은 설계 강우량 추정에 영향을 미치며, 특정 기후변수와 강우 패턴이 상관성을 가지는 것을 확인함으로써 합리적인 설계 강우량 산정을 위한 중요한 근거를 제공할 것으로 사료된다.

  • PDF

Sound Model Generation using Most Frequent Model Search for Recognizing Animal Vocalization (최대 빈도모델 탐색을 이용한 동물소리 인식용 소리모델생성)

  • Ko, Youjung;Kim, Yoonjoong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.85-94
    • /
    • 2017
  • In this paper, I proposed a sound model generation and a most frequent model search algorithm for recognizing animal vocalization. The sound model generation algorithm generates a optimal set of models through repeating processes such as the training process, the Viterbi Search process, and the most frequent model search process while adjusting HMM(Hidden Markov Model) structure to improve global recognition rate. The most frequent model search algorithm searches the list of models produced by Viterbi Search Algorithm for the most frequent model and makes it be the final decision of recognition process. It is implemented using MFCC(Mel Frequency Cepstral Coefficient) for the sound feature, HMM for the model, and C# programming language. To evaluate the algorithm, a set of animal sounds for 27 species were prepared and the experiment showed that the sound model generation algorithm generates 27 HMM models with 97.29 percent of recognition rate.

Landslide Susceptibility Mapping Using Ensemble FR and LR models at the Inje Area, Korea (FR과 LR 앙상블 모형을 이용한 산사태 취약성 지도 제작 및 검증)

  • Kim, Jin Soo;Park, So Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • This research was aimed to analyze landslide susceptibility and compare the prediction accuracy using ensemble frequency ratio (FR) and logistic regression at the Inje area, Korea. The landslide locations were identified with the before and after aerial photographs of landslide occurrence that were randomly selected for training (70%) and validation (30%). The total twelve landslide-related factors were elevation, slope, aspect, distance to drainage, topographic wetness index, stream power index, soil texture, soil sickness, timber age, timber diameter, timber density, and timber type. The spatial relationship between landslide occurrence and landslide-related factors was analyzed using FR and ensemble model. The produced LSI maps were validated and compared using relative operating characteristics (ROC) curve. The prediction accuracy of produced ensemble LSI map was about 2% higher than FR LSI map. The LSI map produced in this research could be used to establish land use planning and mitigate the damages caused by disaster.

Analysis for Flood Quantile Estimates at Ungauged Sites in Arid and Semi-arid Regions Based on Regional Frequency Analysis (지역빈도해석을 통한 건조지역의 미계측 지점 확률홍수량 추정을 위한 연구)

  • Jung, Kichul;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.51-51
    • /
    • 2017
  • 지역빈도해석은 짧은 기간의 자료를 보유하고 있는 계측 지점이나 자료가 없는 미계측 지점에서의 확률수문량을 산정하기 위하여 많이 쓰여 진다. 지역빈도해석을 실시하기 위한 조건으로는 우선 수집된 하천유역들을 대상으로 수문학적 동질 지역을 구분하는 것이 중요하다. 그리고 구분되어진 지역에 포함되는 모든 지점들의 자료를 빈도해석 함으로써 관심 지점의 신뢰할 만한 확률수문량을 산정하는 것이다. 그동안의 지역빈도해석은 주로 비건조지역을 중심으로 홍수와 같은 재난재해 대비 그리고 수자원 관리를 위한 연구들을 실시해왔다. 본 연구의 주 목적은 건조지역의 수자원 관리를 위해 건조지역 하천유역을 중심으로 지역빈도해석을 실시하여 신뢰할만한 확률수문량을 산정하는 것이다. 확률수문량 산정값의 정확도를 향상시키기 위해 지역빈도해석 모델에 쓰여 지는 새로운 지형학적 변수들을 제공하였고 수문학적 동질 지역을 구분 위해 수집된 각 하천유역의 형상들을 확인하여 동질 지역을 정의하였다. 예를 들면, 수지형 유역, 부채형 유역, 격자형 유역과 같은 다른 형상들을 구분하여 각 유역 형상 종류별로 동질 지역을 만들었다. 건조지역의 지역빈도해석을 위해 미국 건조지역의 105개 하천유역 유량자료들을 수집 및 이용하였다. 확률수문량 산정을 위하여 앙상블 인경신경망 (Ensemble Artificial Neural Network)과 정준 상관 계수(Canonical Correlation Analysis)를 이용한 지역빈도해석 모델을 만들었다. 제안된 모델의 수행평가와 정확성 평가를 위해 리샘플링 기법인 10-겹 교차 검증 (10-fold cross-validation), 잭나이프 (Jackknife) 기법들을 이용하였고 모델로부터 산정된 확률수문량값을 편향 (Bias), 상대 편향(rBias), 평균 제곱근 오차 (RMSE), 상대 평균 제곱근 오차 (rRMSE)를 통하여 산정 값과 실제 관측 값의 차이를 분석하였다. 그 결과 건조지역의 지역빈도해석을 위해 새롭게 제시된 지형학적 변수들을 사용하였을 때 모델의 수행능력이 향상되었음을 확인하였다. 또한 하천유역 형상에 따라 동질 지역을 구분하였을 때 향상된 확률수문량이 산정되었다. 향상된 지역빈도해석 모델을 통해 건조지역의 신뢰할만한 확률수문량을 산정함으로써 건조지역의 효과적인 수자원 관리를 위한 수공시설물 설계에 중요한 정보들을 제공할 것이다.

  • PDF

Prediction of Ground Subsidence Hazard Area Using GIS and Probability Model near Abandoned Underground Coal Mine (GIS 및 확률모델을 이용한 폐탄광 지역의 지반침하 위험 예측)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Lee, Sa-Ro;Kim, Il-Soo;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.295-306
    • /
    • 2007
  • In this study, we predicted areas vulnerable to ground subsidence near abandoned underground coal mine at Sam-cheok City in Korea using a probability (frequency ratio) model with Geographic Information System (GIS). To extract the factors related to ground subsidence, a spatial database was constructed from a topographical map, geo-logical map, mining tunnel map, land characteristic map, and borehole data on the study area including subsidence sites surveyed in 2000. Eight major factors were extracted from the spatial analysis and the probability analysis of the surveyed ground subsidence sites. We have calculated the decision coefficient ($R^2$) to find out the relationship between eight factors and the occurrence of ground subsidence. The frequency ratio model was applied to deter-mine each factor's relative rating, then the ratings were overlaid for ground subsidence hazard mapping. The ground subsidence hazard map was then verified and compared with the surveyed ground subsidence sites. The results of verification showed high accuracy of 96.05% between the predicted hazard map and the actual ground subsidence sites. Therefore, the quantitative analysis of ground subsidence near abandoned underground coal mine would be possible with a frequency ratio model and a GIS.

Non-stationary frequency analysis of monthly maximum daily rainfall in summer season considering surface air temperature and dew-point temperature (지표면 기온 및 이슬점 온도를 고려한 여름철 월 최대 일 강수량의 비정상성 빈도해석)

  • Lee, Okjeong;Sim, Ingyeong;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • In this study, the surface air temperature (SAT) and the dew-point temperature (DPT) are applied as the covariance of the location parameter among three parameters of GEV distribution to reflect the non-stationarity of extreme rainfall due to climate change. Busan station is selected as the study site and the monthly maximum daily rainfall depth from May to October is used for analysis. Various models are constructed to select the most appropriate co-variate(SAT and DPT) function for location parameter of GEV distribution, and the model with the smallest AIC(Akaike Information Criterion) is selected as the optimal model. As a result, it is found that the non-stationary GEV distribution with co-variate of exp(DPT) is the best. The selected model is used to analyze the effect of climate change scenarios on extreme rainfall quantile. It is confirmed that the design rainfall depth is highly likely to increase as the future DPT increases.

Automatic Text Categorization by Term Weighting and Inverted Category Frequency (용어 가중치와 역범주 빈도에 의한 자동문서 범주화)

  • Lee, Kyung-Chan;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.14-17
    • /
    • 2003
  • 문서의 확률을 이용하여 자동으로 문서를 분류하는 문서 범주화 기법의 대표적인 방법이 나이브 베이지언 확률 모델이다. 이 방법의 기본 형식은 출현 용어의 확률 계산 방법이다. 하지만 실제 문서 범주화 과정에서 출현하지 않는 용어들도 성능에 많은 영향을 줄 수 있으며, 출현 용어들에 대한 빈도 이외의 역범주 빈도나 용어가중치를 적용하여 문서 범주화 시스템의 성능을 향상시킬 수 있다. 본 논문에서는 나이브 베이지언 확률 모델에 출현 용어와 출현하지 않는 용어들에 대한 smoothing 기법을 적용하여 실험하였다. 성능 평가를 위해 뉴스그룹 문서들을 이용하였으며, 역범주 빈도와 가중치를 적용했을 때 나이브 베이지언 확률 모델에 비해 약 7% 정도 성능 개선 효과가 있었다.

  • PDF

A Study on Nonstationary Regional Frequency Analysis based on Climate Change Scenarios (기후변화 시나리오를 이용한 비정상성 지역빈도해석에 관한 연구)

  • Kim, Sunghun;Kim, Hanbeen;Jung, Younghun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.337-337
    • /
    • 2019
  • 지구 온난화에 따른 기후변화로 인하여 태풍, 폭염, 홍수 및 가뭄 등과 같은 다양한 자연재해는 해마다 증가하고 있으며, 이에 따른 사회적 우려의 목소리가 커지고 있다. 특히 극한 강우와 홍수는 막대한 재산피해와 인명사고 등과 같은 재난에 직결된다. 자연재해에 대한 피해를 사전에 방지하기 위해서는 수자원 시스템을 이해하고, 미래 기후변화를 고려하는 것이 중요하다. 이미 많은 국가들은 기후변화에 대한 영향을 분석하고, 이에 적응하기 위한 노력을 하고 있다. 일반적으로 기후 모델로부터 생산된 모의자료를 이용하여 현재기간에 대비한 미래기간의 변화를 분석하게 되며, 이미 수문통계학 분야에서는 미래 강수량 변화를 살펴보기위해 다양한 연구가 수행되었다. 본 연구는 HadGEM3-RA 기후 모델의 강수 자료에서 연최대 자료를 추출하였고, 이를 이용하여 비정상성 지역빈도해석을 수행하였다. 지역빈도해석 방법은 홍수지수법(index flood method)을 이용하였고, 대상유역으로 한강유역을 선정하여 적용하였다. 또한 RCP(Representative Concentration Pathways) 시나리오는 RCP 4.5와 RCP 8.5를 적용하였으며, 각 시나리오에 따른 강수량 변화율은 전망 기간(S0:1979-2005, S1:2011-2040, S2: 2041-2070, S3:2071-2100)에 따라 비교 분석하였다.

  • PDF