• Title/Summary/Keyword: 빅데이터 마이닝

Search Result 458, Processing Time 0.034 seconds

Social perception of the Arduino lecture as seen in big data (빅데이터 분석을 통한 아두이노 강의에 대한 사회적 인식)

  • Lee, Eunsang
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.935-945
    • /
    • 2021
  • The purpose of this study is to analyze the social perception of Arduino lecture using big data analysis method. For this purpose, data from January 2012 to May 2021 were collected using the Textom website as a keyword searched for 'arduino + lecture' in blogs, cafes, and news channels of NAVER website. The collected data was refined using the Textom website, and text mining analysis and semantic network analysis were performed by opening the Textom website, Ucinet 6, and Netdraw programs. As a result of text mining analysis such as frequency analysis, TF-IDF analysis, and degree centrality it was confirmed that 'education' and 'coding' were the top keywords. As a result of CONCOR analysis for semantic network analysis, four clusters can be identified: 'Arduino-related education', 'Physical computing-related lecture', 'Arduino special lecture', and 'GUI programming'. Through this study, it was possible to confirm various meaningful social perceptions of the general public in relation to Arduino lecture on the Internet. The results of this study will be used as data that provides meaningful implications for instructors preparing for Arduino lectures, researchers studying the subject, and policy makers who establish software education or coding education and related policies.

The Design of Keyword Analysis System using a Opinion Mining Scheme (오피니언 마이닝 기법을 이용한 키워드 분석 시스템 설계)

  • Moon, Hee Jun;Kim, Dong Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.141-142
    • /
    • 2022
  • 최근 빅데이터를 통해 여러 가지 분석을 진행하고 있다. 다만 이러한 방식으로는 키워드에 대해 여론에 대한 분석을 거치지 않아 정확한 분석이 힘들다는 문제점을 가지고 있다. 따라서 본 논문에서는 이러한 문제점의 개선을 위해 데이터를 수집하고 이에 대해 감정분석을 수행하는 컨테이너 기반의 시스템을 제안한다. 감정분석 시스템을 적용한다면 키워드에 대해 분석 시에 정확도가 더욱 높아질 것으로 전망된다.

  • PDF

Big data-based information recommendation system (빅데이터 기반 정보 추천 시스템)

  • Lee, Jong-Chan;Lee, Moon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.443-450
    • /
    • 2018
  • Due to the improvement of quality of life, health care is a main concern of modern people, and the demand for healthcare system is increasing naturally. However, it is difficult to provide customized wellness information suitable for a specific user because there are various medical information on the Internet and it is difficult to estimate the reliability of the information. In this study, we propose a user - centered service that can provide customized service suitable for users rather than simple search function by classifying big data as text mining and providing personalized medical information. We built a big data system and measured the data processing time while increasing the Hadoop slave node for efficient big data analysis. It is confirmed that it is efficient to build big data system than existing system.

A Pattern on Keyword of the Creative Economy through Utilizing Big Data Analysis (빅 데이터 분석을 활용한 창조경제 키워드에 대한 패턴)

  • Jin, Chan-Yong;Nam, Soo-Tai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.143-144
    • /
    • 2016
  • 빅 데이터 분석은 기존 데이터베이스 관리 도구로부터 데이터를 수집, 저장, 관리, 분석할 수 있는 역량을 말한다. 또한, 대량의 정형 또는 비정형 데이터 집합으로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 대부분의 빅 데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 해당된다. 글로벌 리서치 기관들은 빅 데이터를 2011년 이래로 최근 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅 데이터의 적용을 통해 가치 창출을 위한 노력을 기하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅 데이터 분석도구인 소셜 매트릭스를 활용하여 키워드 분석을 통해 창조경제 키워드 의미를 분석하고자 한다. 또한, 분석결과를 바탕으로 이론적 실무적 시사점을 제시하고자 한다.

  • PDF

Comparing Customer Reactions Before and After of a Smart Watch Release through Opinion Mining (오피니언 마이닝을 통한 스마트 워치 출시 전후 소비자 반응 분석)

  • Lee, Jongho;Park, Heejun
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Social media such as twitter has been popular by the diffusion of internet, and thanks to the radical improvement of computational ability of computers big data analysis became possible. This research is regarding about smart watch which is receiving attention as post-smartphone technology. Among various types of smart watch, this research focuses on the recently released Samsung Galaxy Gear S2. The main purpose of the research is to analyze customer's actual twitter data that was produced before and after the release of the smart watch to the market. Through the analysis, this research provides practical marketing strategy guideline, and also the analysis framework used in this research can be a research framework for other area and product researches.

  • PDF

Trend Analysis of Apartments Demand based on Big Data (빅데이터 기반의 아파트 수요 트렌드 분석에 관한 연구)

  • Kim, Tae-Kyeong;Kim, Han Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.6
    • /
    • pp.13-25
    • /
    • 2017
  • Apartments are a major type of residence and their number has continuously increased. Apartments have multiple meanings in that for public they are not only for residence purpose but for investment, a major commodity for construction firms and a critical policy measure of public well-fare for the government. Therefore, it is critical to understand and analyze trends in apartments demand for pro-active actions. The objective of the study is to analyze and identify key trends in apartments demand based on big data drawn from articles of major daily newspapers. The study identifies 17 major trends from seven themes including development, trade, sale in lots, location requirements, policy, residential environment, and investment and profit. The research methods in the study can be usefully applied to further studies for various issues in relation to the construction industry.

BigData Research in Information Systems : Focusing on Journal Articles about Information Systems (정보시스템 분야의 빅데이터 연구 흐름 분석 : Information Systems 관련 저널을 중심으로)

  • Park, Kyungbo;Kim, Juyeong;Kim, Han-Min
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.681-689
    • /
    • 2019
  • The 46th Davos Forum of the World Economic Forum (WEF) predicts the continued growth of the 4th industry in the future. Currently, the 4th industry is attracting attention in various academic and practical fields. As a core technology of the 4th industry, Big Data is regarded as a major resource to lead the 4th industrial revolution along with artificial intelligence. As the growing interest in Big Data, researches on it are actively being done. However, literature studies on existing Big Data are focused on qualitative research, and quantitative research is insufficient. Therefore, this study aims to analyze the big data research flow in MIS field and to make academic thirst for quantification. This study has collected 145 abstracts of big data papers published in major journals in MIS field and confirmed that a majority of papers are published in Decision Support Systems Journal. Text mining and text network analysis were performed only for DSS journals to eliminate bias. As a result of the analysis, it was found out that researches on combining big data in the management field between 2012 and 2014, and researches on system development and analysis method for using big data from 2015 to 2017 were conducted.

Presenting the possibility of using water pipe network data through R-based data mining analysis (R기반 데이터마이닝 분석을 통한 상수관망 자료 활용가능성 제시)

  • Hong, Sung Jin;Lee, Chan Wook;Yoo, Do Guen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.236-236
    • /
    • 2020
  • 데이터마이닝은 빅데이터를 활용하는데 주로 활용되는 기술이다. 빅데이터 활용의 중요성이 증대됨에 따라 빅데이터를 기반으로 데이터마이닝을 활용한 생산, 금융, 통신 등의 성공적인 활용사례가 있지만 상수도 시설물에 적용한 사례는 드물다. 본 연구에서는 R프로그램을 기반으로 확보하기 어려운 데이터를 얻고자 관련 기사를 수집하고 데이터마이닝의 주요 기능인 분류, 군집(K-means)분석을 수행하였다. 예를들어, 상수관로의 정밀한 누수 분석을 위해서는 관경, 매설년도 등의 세분화된 자료가 필요하나 이러한 자료들은 쉽게 확보할 수 없다는 한계를 갖고 있다. 이러한 관점에서 상수관망 단수, 누수 등의 키워드를 통해 얻을 수 있는 기사를 기반으로 주요 키워드에 대한 군집분석을 수행하여 세분화된 상수관망 자료를 획득 및 분석하였다. 단수, 누수 키워드 기사에 의해 관경정보 등 파손된 관로의 정보를 확보할 수 있는 것으로 나타났으며 향후 확보하기 어려운 데이터를 보완할 수 있는 방법 중 하나로 활용될 수 있을것으로 기대된다. 그러나, 데이터의 양과 보다 정교한 군집분석을 위한 키워드설정 등의 추가연구가 필요할 것으로 판단된다.

  • PDF

Analysis of Real Estate Market Trend Using Text Mining and Big Data (빅데이터와 텍스트마이닝을 이용한 부동산시장 동향분석)

  • Chun, Hae-Jung
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.49-55
    • /
    • 2019
  • This study is on the trend of real estate market using text mining and big data. The data were collected through internet news posted on Naver from August 2016 to August 2017. As a result of TF-IDF analysis, the frequency was high in the order of housing, sale, household, real estate market, and region. Many words related to policies such as loan, government, countermeasures, and regulations were extracted, and the region - related words appeared the most frequently in Seoul. The combination of the words related to the region showed that the frequencies of 'Seoul - Gangnam', 'Seoul - Metropolitan area', 'Gangnam - reconstruction' and 'Seoul - reconstruction' appeared frequently. It can be seen that the people's interest and expectation about the reconstruction of Gangnam area is high.

For airline preferences of consumers Big Data Convergence Based Marketing Strategy (소비자의 항공사 선호도에 대한 빅데이터 융합 기반 마케팅 전략)

  • Chun, Yong-Ho;Lee, Seung-Joon;Park, Su-Hyeon
    • Journal of Industrial Convergence
    • /
    • v.17 no.3
    • /
    • pp.17-22
    • /
    • 2019
  • As the value of big data is recognized as important, it is possible to advance decision making by effectively introducing and improving the development and utilization of JAVA and R programs that can analyze vast amounts of existing and unstructured data to governments, public institutions and private businesses. In this study, news data was collated and analyzed through text mining techniques in order to establish marketing strategies based on consumers' airline preferences. This research is meaningful in establishing marketing strategies based on analysis results by analyzing consumers' airline preferences using high-level big data utilization program techniques for data that were difficult to obtain in the past.