• Title/Summary/Keyword: 빅데이터 마이닝

Search Result 458, Processing Time 0.035 seconds

SNS Analysis Related to Presidential Election Using Text Mining (텍스트 마이닝을 활용한 대선 관련 SNS 분석)

  • Kwon, Young-Woo;Jung, Deok-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.361-363
    • /
    • 2017
  • 최근 소셜 미디어의 이용률이 폭발적으로 증가함에 따라, 방대한 데이터가 네트워크로 쏟아져 나오고 있다. 이들 데이터는 기존의 정형 데이터뿐만 아니라 이미지, 동영상 등의 비정형 데이터가 있으며, 이들을 포괄하여 빅데이터라고 불린다. 이러한 빅데이터는 오피니언 마이닝, 테스트 마이닝 등의 기술적인 분석 기법과 빅데이터 요약 및 효과적인 표현방법에 대한 시각화 기법에 대하여 활발한 연구가 이루어지고 있다. 이 논문은 인기 있는 사회연결망 서비스인 Twitter의 트윗을 수집하고, 빅데이터 분석 기법인 텍스트 마이닝을 활용하여 2017년 대선에 대하여 분석하였다. 또한 분석된 자료의 효과적인 전달을 위해 워드 클라우드 진행하였다. 이 논문을 위하여 인기 있는 SNS인 Twitter의 최근 7일간 트윗(tweet)을 수집하고 분석하였다.

  • PDF

Bigdata Analysis on Keyword by Generations through Text Mining: Focused on Board of Nate Pann in 10s, 20s, 30s (텍스트 마이닝을 활용한 세대별 키워드 빅데이터 분석: 네이트판 10대·20대·30대 게시판을 중심으로)

  • Jeong, Baek;Bae, Sungwon;Hwangbo, Yujeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.513-516
    • /
    • 2022
  • 본 논문에서는 텍스트 마이닝 기법을 이용하여 MZ 세대를 이해하는 키워드를 도출하고자 한다. MZ 세대의 비중이 높아지면서, MZ 세대를 분석하려고 하는 많은 연구들이 수행되고 있다. 이에 본 연구에서는 MZ 세대를 이해하기 위하여 네이트 판의 연령별 게시판 크롤링을 통해 빅데이터를 수집하였다. 그리고 텍스트 마이닝 기법을 활용하여 10대, 20대, 30대의 각각의 키워드를 도출할 수 있었다. 본 논문에서 도출된 키워드는 이는 MZ 세대를 이해하는데 중요한 키워드로 볼 수 있을 것이다. 향후 연구로는 MZ 세대와 기성 세대를 비교하기 위하여 추가 크롤링을 통해 세대 간 비교 연구를 수행하고자 한다.

  • PDF

Current Status of Educational Big Data Research (교육 빅데이터 관련 연구 동향)

  • Lee, Eun-young;Park, Do-oung;Choi, In-ong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.175-176
    • /
    • 2014
  • 본고에서는 교육 빅데이터의 개념, 가치, 처리 기술 및 분석 방법 등을 탐색하였다. '온라인과 오프라인 교수 학습 활동의 투입, 과정, 산출을 통해 생산되는 국가, 지역, 학교, 교사, 학생 수준의 자료'로 정의할 수 있는 교육 빅데이터는 Hadoop으로 대표되는 분산 컴퓨팅 기술을 통해 효율적으로 처리할 수 있다. 대규모 교육 자료에서 의미있고 유용한 결과를 도출하기 위해 주로 사용되는 분석 방법에는 교육 데이터 마이닝, 학습 분석학과 시각 자료 분석학이 있다. 교육 데이터 마이닝은 학생과 교사, 학교의 다양한 수준에서 자료를 폭넓게 분석하는 측면이 강한 반면에 학습 분석학은 학생 수준에서의 자료 분석에 더 초점을 맞추는 경향이 있으며, 시각 자료 분석학은 자료에 대한 분석 자체보다는 분석 결과를 효과적으로 표현하는 방식에 초점이 주어져 있다.

  • PDF

Developing Corporate Valuation System with Opinion Mining Based on Big Data (빅데이터 기반의 오피니언 마이닝을 이용한 기업 가치 평가 시스템 개발)

  • Lee, Jung-Tae;Cheon, Mina;Lim, Sang-Woo;June, Byung-Seok;Kim, Jae-Hoon;Han, Yeong-Woo
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.126-128
    • /
    • 2013
  • 빅데이터(Big Data)는 현재 생산되고 있는 데이터 중 그 규모가 방대하고, 생성 주기가 짧으며, 수치 데이터 뿐 아니라 텍스트 이외의 멀티미디어 등 비정형화된 데이터를 포함하는 대규모 데이터를 말한다. 빅데이터를 처리하여 가치 있는 정보를 추출하는 방법에 관한 연구가 활발하게 진행되고 있으며, 이를 바탕으로 빅데이터가 다양한 분야에서 활용되고 있다. 현재 국내 주식시장에서도 빅데이터를 이용하여 기업의 투자에 활용하고 있다. 이 논문에서는 인터넷의 증권과 관련된 뉴스를 수집하여 수집된 뉴스와 주가 지수를 이용하여 기업 뉴스 평가 시스템을 개발하는 방법을 제안한다.

  • PDF

Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform (빅데이터 플랫폼을 위한 SON알고리즘 기반의 효과적인 연관 룰 마이닝)

  • Nguyen, Giang-Truong;Nguyen, Van-Quyet;Nguyen, Sinh-Ngoc;Kim, Kyungbaek
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1593-1601
    • /
    • 2017
  • In a big data platform, association rule mining applications could bring some benefits. For instance, in a agricultural big data platform, the association rule mining application could recommend specific products for farmers to grow, which could increase income. The key process of the association rule mining is the frequent itemsets mining, which finds sets of products accompanying together frequently. Former researches about this issue, e.g. Apriori, are not satisfying enough because huge possible sets can cause memory to be overloaded. In order to deal with it, SON algorithm has been proposed, which divides the considered set into many smaller ones and handles them sequently. But in a single machine, SON algorithm cause heavy time consuming. In this paper, we present a method to find association rules in our Hadoop based big data platform, by parallelling SON algorithm. The entire process of association rule mining including pre-processing, SON algorithm based frequent itemset mining, and association rule finding is implemented on Hadoop based big data platform. Through the experiment with real dataset, it is conformed that the proposed method outperforms a brute force method.

A Development on a Predictive Model for Buying Unemployment Insurance Program Based on Public Data (공공데이터 기반 고용보험 가입 예측 모델 개발 연구)

  • Cho, Minsu;Kim, Dohyeon;Song, Minseok;Kim, Kwangyong;Jeong, Chungsik;Kim, Kidae
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.17-31
    • /
    • 2017
  • With the development of the big data environment, public institutions also have been providing big data infrastructures. Public data is one of the typical examples, and numerous applications using public data have been provided. One of the cases is related to the employment insurance. All employers have to make contracts for the employment insurance for all employees to protect the rights. However, there are abundant cases where employers avoid to buy insurances. To overcome these challenges, a data-driven approach is needed; however, there are lacks of methodologies to integrate, manage, and analyze the public data. In this paper, we propose a methodology to build a predictive model for identifying whether employers have made the contracts of employment insurance based on public data. The methodology includes collection, integration, pre-processing, analysis of data and generating prediction models based on process mining and data mining techniques. Also, we verify the methodology with case studies.

  • PDF

Automatic Generation of Issue Analysis Report Based on Social Big Data Mining (소셜 빅데이터 마이닝 기반 이슈 분석보고서 자동 생성)

  • Heo, Jeong;Lee, Chung Hee;Oh, Hyo Jung;Yoon, Yeo Chan;Kim, Hyun Ki;Jo, Yo Han;Ock, Cheol Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.553-564
    • /
    • 2014
  • In this paper, we propose the system for automatic generation of issue analysis report based on social big data mining, with the purpose of resolving three problems of the previous technologies in a social media analysis and analytic report generation. Three problems are the isolation of analysis, the subjectivity of experts and the closure of information attributable to a high price. The system is comprised of the natural language query analysis, the issue analysis, the social big data analysis, the social big data correlation analysis and the automatic report generation. For the evaluation of report usefulness, we used a Likert scale and made two experts of big data analysis evaluate. The result shows that the quality of report is comparatively useful and reliable. Because of a low price of the report generation, the correlation analysis of social big data and the objectivity of social big data analysis, the proposed system will lead us to the popularization of social big data analysis.

정박 중 준해양사고 원인에 대한 빅데이터 분석 연구

  • No, Beom-Seok;Kim, Tae-Hun;Gang, Seok-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.144-146
    • /
    • 2018
  • 준해상사고를 줄이기 위하여 준해양사고 등을 분석하여 사고 예방에 활용하였다. 하지만 준해양사고 건수가 많은 대신 주내용이 정성적이기 때문에 다양한 정량적 데이터로 분석하기에는 현실적 어려움이 있었다. 이러 장단점을 고려하여 준해양사고에 대해서 그동안 단순한 내용 검토 방식에서 통계적 분석과 이를 통한 객관적 결과 토출이 가능한 빅데이터 기법를 적용한 연구가 필요하다. 이를 위해 10,000여건의 준해양사고 보고서를 전처리 작업을 통해 통일된 양식으로 정리하였다. 이 데이터를 기반으로 1차로 텍스트마이닝 분석을 통해 정박 중 준해양사고 발생 원인에 대한 주요 키워드를 도출하였다. 주요 키워드에 대해 2차로 시계열 및 클러스터 분석을 통해 발생할 수 있는 준해양 사고 상황에 대한 경향 예측을 도출하였다. 이번 연구에서는 정성적 자료인 준해양사고 보고서를 빅데이터 기법을 활용하여 정량화된 데이터로 전환할 수 있고 이를 통해 통계적 분석이 가능함을 확인하였다. 또한 빅데이터 기법을 통해 차 후 발생할 수 있는 준해양사고 객관적인 경향을 파악함으로써 예방 대책에 대한 정보 제공이 가능함을 확인할 수 있었다.

  • PDF

A Insight Study on Keyword of 4th Industrial Revolution Utilizing Big Data (빅데이터 분석을 활용한 4차 산업혁명 키워드에 대한 통찰)

  • Nam, Soo-Tai;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.153-155
    • /
    • 2017
  • 빅데이터 분석은 데이터베이스에 잘 정리된 정형 데이터뿐 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 데이터를 효과적으로 분석하는 기술을 말한다. 대부분의 빅데이터 분석 기술 방법들은 기존 통계학과 전산학에서 사용되던 데이터 마이닝, 기계 학습, 자연 언어 처리, 패턴 인식 등이 이에 해당된다. 글로벌 리서치 기관들은 빅데이터를 2011년 이래로 최근 가장 주목받는 신기술로 지목해오고 있다. 따라서 대부분의 산업에서 기업들은 빅데이터의 적용을 통해 가치 창출을 위한 노력을 기하고 있다. 본 연구에서는 다음 커뮤니케이션의 빅데이터 분석도구인 소셜 매트릭스를 활용하여 2017년 5월, 1개월 시점을 설정하고 "4차 산업혁명" 키워드에 대한 소비자들의 인식들을 살펴보았다. 빅데이터 분석의 결과는 다음과 같다. 첫째, 4차 산업혁명 키워드에 대한 연관 검색어 1위는 "후보"가 빈도수(7,613)인 것으로 나타났다. 둘째, 연관 검색어 2위는 "안철수"가 빈도수(7,297), 3위는 "문재인"이 빈도수(5,183)로 각각 나타났다. 다음으로 "4차 산업혁명" 키워드에 대한 검색어 긍정적 여론 빈도수 1위는 새로운(895)으로 나타났고, 부정적 여론 빈도수 1위는 위기(516)가 차지하였다. 이러한 결과 분석결과를 바탕으로 연구의 한계와 시사점을 제시하고자 한다.

  • PDF

Big data mining for natural disaster analysis (자연재해 분석을 위한 빅데이터 마이닝 기술)

  • Kim, Young-Min;Hwang, Mi-Nyeong;Kim, Taehong;Jeong, Chang-Hoo;Jeong, Do-Heon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1105-1115
    • /
    • 2015
  • Big data analysis for disaster have been recently started especially to text data such as social media. Social data usually supports for the final two stages of disaster management, which consists of four stages: prevention, preparation, response and recovery. Otherwise, big data analysis for meteorologic data can contribute to the prevention and preparation. This motivated us to review big data technologies dealing with non-text data rather than text in natural disaster area. To this end, we first explain the main keywords, big data, data mining and machine learning in sec. 2. Then we introduce the state-of-the-art machine learning techniques in meteorology-related field sec. 3. We show how the traditional machine learning techniques have been adapted for climatic data by taking into account the domain specificity. The application of these techniques in natural disaster response are then introduced (sec. 4), and we finally conclude with several future research directions.