• Title/Summary/Keyword: 비 클러스터링 방법

Search Result 280, Processing Time 0.022 seconds

Adaptive Load Balancing Scheme using a Combination of Hierarchical Data Structures and 3D Clustering for Parallel Volume Rendering on GPU Clusters (계층 자료구조의 결합과 3차원 클러스터링을 이용하여 적응적으로 부하 균형된 GPU-클러스터 기반 병렬 볼륨 렌더링)

  • Lee Won-Jong;Park Woo-Chan;Han Tack-Don
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.1-14
    • /
    • 2006
  • Sort-last parallel rendering using a cluster of GPUs has been widely used as an efficient method for visualizing large- scale volume datasets. The performance of this method is constrained by load balancing when data parallelism is included. In previous works static partitioning could lead to self-balance when only task level parallelism is included. In this paper, we present a load balancing scheme that adapts to the characteristic of volume dataset when data parallelism is also employed. We effectively combine the hierarchical data structures (octree and BSP tree) in order to skip empty regions and distribute workload to corresponding rendering nodes. Moreover, we also exploit a 3D clustering method to determine visibility order and save the AGP bandwidths on each rendering node. Experimental results show that our scheme can achieve significant performance gains compared with traditional static load distribution schemes.

Design and Implementation of Spatial Characterization System using Density-Based Clustering (밀도 클러스터링을 이용한 공간 특성화 시스템 설계 및 구현)

  • You Jae-Hyun;Park Tae-Su;Ahn Chan-Min;Park Sang-Ho;Hong Jun-Sik;Lee Ju-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.43-52
    • /
    • 2006
  • LRecently, with increasing interest in ubiquitous computing, knowledge discovery method is needed with consideration of the efficiency and the effectiveness of wide range and various forms of data. Spatial Characterization which extends former characterization method with consideration of spatial and non-spatial property enables to find various form of knowledge in spatial region. The previous spatial characterization methods have the problems as follows. Firstly, former study shows the problem that the result of searched knowledge is unable to perform the multiple spatial analysis. Secondly, it is unable to secure the useful knowledge search since it searches the limited spatial region which is allocated by the user. Thus, this study suggests spatial characterization which applies to density based clustering.

  • PDF

Effective Streaming of XML Data for Wireless Broadcasting (무선 방송을 위한 효과적인 XML 스트리밍)

  • Park, Jun-Pyo;Park, Chang-Sup;Chung, Yon-Dohn
    • Journal of KIISE:Databases
    • /
    • v.36 no.1
    • /
    • pp.50-62
    • /
    • 2009
  • In wireless and mobile environments, data broadcasting is recognized as an effective way for data dissemination due to its benefits to bandwidth efficiency, energy-efficiency, and scalability. In this paper, we address the problem of delayed query processing raised by tree-based index structures in wireless broadcast environments, which increases the access time of the mobile clients. We propose a novel distributed index structure and a clustering strategy for streaming XML data which enable energy and latency-efficient broadcast of XML data. We first define the DIX node structure to implement a fully distributed index structure which contains tag name, attributes, and text content of an element as well as its corresponding indices. By exploiting the index information in the DIX node stream, a mobile client can access the wireless stream in a shorter latency. We also suggest a method of clustering DIX nodes in the stream, which can further enhance the performance of query processing over the stream in the mobile clients. Through extensive performance experiments, we demonstrate that our approach is effective for wireless broadcasting of XML data and outperforms the previous methods.

Traffic Speed Prediction Based on Graph Neural Networks for Intelligent Transportation System (지능형 교통 시스템을 위한 Graph Neural Networks 기반 교통 속도 예측)

  • Kim, Sunghoon;Park, Jonghyuk;Choi, Yerim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.70-85
    • /
    • 2021
  • Deep learning methodology, which has been actively studied in recent years, has improved the performance of artificial intelligence. Accordingly, systems utilizing deep learning have been proposed in various industries. In traffic systems, spatio-temporal graph modeling using GNN was found to be effective in predicting traffic speed. Still, it has a disadvantage that the model is trained inefficiently due to the memory bottleneck. Therefore, in this study, the road network is clustered through the graph clustering algorithm to reduce memory bottlenecks and simultaneously achieve superior performance. In order to verify the proposed method, the similarity of road speed distribution was measured using Jensen-Shannon divergence based on the analysis result of Incheon UTIC data. Then, the road network was clustered by spectrum clustering based on the measured similarity. As a result of the experiments, it was found that when the road network was divided into seven networks, the memory bottleneck was alleviated while recording the best performance compared to the baselines with MAE of 5.52km/h.

A Study of An Efficient Clustering Processing Scheme of Patient Disease Information for Cloud Computing Environment (클라우드 컴퓨팅 환경을 위한 환자 질병 정보의 효율적인 클러스터링 처리 방안에 대한 연구)

  • Jeong, Yoon-Su
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • Disease of patient who visited the hospital can cause different symptoms of the disease, depending on the environment and lifestyle. Recent medical services offered in patients has changed in the environment that can be selected for treatment by analyzing the patient according to the disease symptoms. In this paper, we propose an efficient method to manage disease control because the treatment method may change at any patients suffering from the disease according to the patient conditions by grouping the different treatments to patients for disease information. The proposed scheme has a feature that can be ingested by the patient big disease information, as well as to improve the treatment efficiency of the medical treatment the increase patient satisfaction. The proposed sheme can handle big data by clustering of disease information for patients suffering from diseases such as patient consent small groups. In addition, the proposed scheme has the advantage that can be conveniently accessed via a particular keyword, the treatment method according to patient disease information. The experimental results, the proposed method has been improved by 23% in terms of efficiency compared to conventional techniques, disease management time is gained 11.3% improved results. Medical service user satisfaction seen from the survey is to obtain a high 31.5% results.

Automatic Flower Recognition using Smartphones (스마트폰을 이용한 꽃 자동 인식 시스템)

  • Hong, Soon-Won;Choi, Lynn
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.462-465
    • /
    • 2011
  • 본 논문에서는 자동으로 꼴을 인식하는 시스템을 제안한다. 기존 연구에서 제안한 방식은 대부분 사용자가 직접 꽃의 윤곽선을 조정하는 방식을 사용하였다. 이러한 방법은 사용자 편의성 측면에서 비효율적이므로 본 연구에서 제안하는 시스템은 사용자와의 상호작용 없이 영상처리만을 이용하여 꽃을 인식할 수 있는 방법을 제시한다. 서버-클라이언트 형태로 구성된 꽃 인식 시스템은 사용자가 전송한 영상의 컬러와 경계선 정보를 기반으로 영상 내에서 꽃의 영역을 찾는다. 꽃의 영역에서 색상과 윤곽선 정보를 추출한 뒤, k-means 클러스터링과 히스토그램 매칭을 통하여 서버에 저장된 기준 이미지와 가장 일치하는 꽃을 탐색하여 사용자에게 알려준다. 100종류의 꽃에 대하여 한 종당 각각 5 가지의 영상을 가지고 실험을 한 결과, 90.8%의 인식률을 얻을 수 있었다.

Localization of Multiple Speakers Using Microphone Array System (마이크로폰 어레이 시스템을 이용한 다화자 방향검지)

  • Hung, Vu Viet;Lee, Chang-Hoon
    • The Journal of Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • 본 논문에서는 마이크로폰 어레이 시스템을 이용하여 여러 화자의 음성 정보로부터 각 화자가 위치한 방향을 추정하는 기술 개발 내용을 다룬다. 성능 향상을 위한 전처리 과정으로 비선형 증폭기를 사용하여 거리에 따른 영향을 최소화하는 과정과 잡음에 대한 강인성을 얻기 위해 음성활성 영역을 검출하는 과정을 포함한다. 등간격으로 배치된 마이크로폰 어레이 시스템의 기하학적 특성에 따른 음원의 위치와 신호의 지연시간차이와의 상관관계로부터 화자의 위치를 역으로 추정하는 알고리즘을 기본으로 하여 가능성 척도를 계산하고 이를 활용하여 가능성이 높은 것들을 클러스터링하여 가능성이 있는 후보를 선정하여 화자의 방향을 검지한다. 이 과정에서 오인식을 최소화하기 위하여 가능성이 희박한 영역에 대한 추정 억제 방법으로 부정식 추론법을 적용하였다. 2 화자의 음성 신호를 입력으로 한 실험을 통하여 제안한 방법에 의한 다화자 방향검지의 가능성을 알아보았다.

  • PDF

Nonlinear System Modeling Using Bacterial Foraging and FCM-based Fuzzy System (Bacterial Foraging Algorithm과 FCM 기반 퍼지 시스템을 이용한 비선형 시스템 모델링)

  • Jo Jae-Hun;Jeon Myeong-Geun;Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.121-124
    • /
    • 2006
  • 본 논문에서는 Bacterial Foraging Algorithm과 FCM(fuzzy c-means)클러스터링을 이용하여 TSK(Takagi-Sugeno-Kang)형태의 퍼지 규칙 생성과 퍼지 시스템(FCM-ANFIS)을 효과적으로 구축하는 방법을 제안한다. 구조동정에서는 먼저 PCA(Principal Component Analysis)을 이용하여 입력 데이터 성분간의 상관관계를 제거한 후에 FCM을 이용하여 클러스터를 생성하고 성능지표에 근거해서 타당한 클러스터의 수, 즉 퍼지 규칙의 수를 얻는다. 파라미터 동정에서는 Bacterial Foraging Algorithm을 이용하여 전제부 파라미터를 최적화 시킨다. 결론부 파라미터는 RLSE(Recursive Least Square Estimate)에 의해 추정되어진다. PCA(Principal Component Analysis)와 FCM을 적용함으로써 타당한 규칙 수를 생성하였고 Bacterial Foraging Algorithm을 이용하여 최적의 전제부 파라미터를 구하였다. 제안된 방법의 성능을 평가하기 위하여 Box-Jenkins의 가스로 데이터와 Rice taste 데이터의 모델링에 적용하였고 우수한 성능을 보임을 알 수 있었다.

  • PDF

Optimal Identification of Data Granules-based Fuzzy Set Fuzzy Model (데이터 입자 기반 퍼지 집합 퍼지 모델의 최적 동정)

  • Park Keon-Jun;Kim Wan-Su;Oh Sung-Kwun;Kim Hyun-Ki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.317-320
    • /
    • 2005
  • 본 논문은 비선형 시스템의 퍼지모델을 설계하기 위해 데이터 입자 기반 퍼지 집합 퍼지 모델의 최적 동정을 제안한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. HCM 클러스터링을 통한 데이터 입자는 입력 변수의 개별적인 퍼지 규칙을 형성하고, 퍼지 공간 분할 및 삼각형 멤버쉽 함수의 초기 정점을 정의한다. 또한, 데이터 입자의 중심을 이용하여 후반부의 구조를 결정한다. 초기 퍼지 모델을 동정하기 위해 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽 함수의 수, 그리고 후반부 형태를 결정한다. 데이터 입자에 의한 전반부 멤버쉽 파라미터는 유전자 알고리즘을 이용하여 최적으로 동정한다 제안된 모델을 평가하기 위해 수치적인 예를 사용한다.

  • PDF

Genetically Optimization of Fuzzy C-Means Clustering based Fuzzy Neural Networks (FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.405-406
    • /
    • 2007
  • 본 논문에서는 FCM 기반 퍼지 뉴럴네트워크 구조를 제안하고 진화 알고리즘을 이용한 FCM 기반 퍼지 뉴럴네트워크의 구조와 파라미터의 최적화 방법을 제시한다. 클러스터링 알고리즘은 퍼지 뉴럴 네트워크에서 멤버쉽함수의 중심점과 반경 등을 결정하는 학습에 일반적으로 사용된다. 제안된 FCM 기반 뉴럴 네트워크에서 멤버쉽함수는 가우시안, 삼각형 타입등의 정해진 형태를 사용하지 않고 데이터들 사이의 거리에 관계된 계산을 수행하는 FCM에 의해 결정된다. 후반부는 상수형, 선형, 2차식 등의 다양한 다항식 구조로 표현될 수 있으며 다항식의 계수는 LSE를 이용하여 결정한다. FCM 기반 퍼지 뉴럴 네트워크는 퍼지규칙의 수, 입력변수의 선택, 후반부 다항식의 차수, FCM의 퍼지화 계수의 결정은 성능에 많은 차이가 있으며 이러한 구조와 파라미터의 최적화가 요구된다. 본 논문에서는 유전자 알고리즘을 이용하여 FCM 기반 퍼지뉴럴네트워크의 구조에 관련된 입력변수의 수, 퍼지규칙의 수 그리고 후반부 다항식의 차수와 파라미터에 관련된 퍼지화 계수를 최적화 한다. 제안된 방법은 비선형 시스템의 모델링에 적용하여 성능을 분석하였다.

  • PDF