플래시 메모리는 기존 저장 매체와는 달리 읽기 연산에 비해 쓰기 연산의 수행비용이 매우 크고, 저장된 데이타에 대한 직접 갱신이 불가능한 고유의 특성이 있다. 본 논문에서는 플래시 메모리 환경이 클러스터링 방법과 비클러스터링 방법에 미치는 영향을 분석한다. 이를 통해 디스크 환경과는 달리 플래시 메모리 환경에서는 비 클러스터링 방법이 더 적합하다는 것을 보인다. 또한, 플래시 메모리 환경에서 비 클러스터링 방법이 가진 문제점을 지적하고, 이를 기반으로 플래시 메모리 환경에서 레코드 관리방법의 설계 시 고려해야 할 사항들을 제안한다.
커널함수를 이용한 클러스터링 방법은 일반적인 목적함수 기반의 클러스터링 방법에 비해 고리모양과 같은 복잡한 모양의 데이터를 클러스터링할 때 훨씬 효율적이다. 그러나, 커널기반의 클러스터링 방법은 거리함수를 계산하기 위하여 커널함수를 연산해야 하기 때문에 클러스터 수가 많아지면, 일반적인 목적함수 기반의 클러스터링 방법에 비하여 계산량이 급격히 증가하는 단점이 있다. 따라서, 본 논문에서는 이러한 단점을 개선하기 위하여 커널기반의 클러스터링 기법에 계층적인 클러스터링 모델을 적용한다.
본 논문에서는 클러스터 간의 중복을 허용한 계층적 클러스터링(hierarchical clustering) 기법에 적합한 클러스터 간 유사도 평가방법(linkage metric)을 제안하였다. 클러스터 간 유사도 평가방법은 계층적 클러스터링에서 클러스터를 통합하거나 분해하는데 쓰이며 사용된 방법에 따라 클러스터링의 결과가 다르게 형성된다. 기존의 클러스터 간 유사도 평가방법인 single linkage, complete linkage, average linkage 중 single linkage와 complete linkage는 클러스터 간 중복이 허용된 환경에서 정확도가 낮은 문제점이 있고, average linkage는 정확도가 두 방법에 비해 높지만 계산 시간 소요가 크다는 단점이 있다. 따라서 본 논문에서는 기존의 average linkage를 개선하여 중복된 데이터에 의한 필요 계산량을 크게 줄임으로써 시간적 성능이 우수한 클러스터 간 유사도 평가방법을 제안하였다. 또한, 제안된 방법을 기존 방법들과 비교실험하여 중복을 허용하는 계층적 클러스터링 환경에서 정확도는 비슷하거나 더 높고, average linkage에 비해 계산량이 감소됨을 확인하였다.
최근 데이터마이닝 응용분야에서 대용량의 고차원 데이터가 증가하고 있기 때문에 이를 효율적으로 처리할 수 있는 방법이 요구된다. 이를 위해 CLIQUE 방법과 셀-기반 클러스터링 방법을 선택하기 위해, 셀-기반 클러스터링 방법을 CLIQUE 방법 및 CLIQUE 방법에 근사정보(Approximation)를 결합한 방법과 성능 비교를 수행한다. 성능비교 결과, 셀-기반 클러스터링 방법이 데이터 클러스터링 및 데이터 검색시간에서 가장 우수한 성능을 보이며, 정확율은 CLIQUE 방법에 비해 다소 뒤떨어지거나 전체적인 효율성에서 매우 우수한 성능을 보인다.
Fuzzy c-means(FCM)는 퍼지 집합을 응용한 간단하지만 효율적인 클러스터링 방법 중 하나이다. FCM은 여러 응용 분야에서 성공적으로 활용되어 왔지만, 초기화와 잡음에 민감하고 볼록한 형태의 클러스터들만 다룰 수 있는 문제점이 있다. 이 논문에서는 이러한 FCM의 문제점을 해결하기 위해 전역 클러스터링(global clustering) 기법과 커널 클러스터링(kernel clustering) 기법을 결합하여 새로운 비선형 클러스터링 기법인 커널 전역 FCM(kernel global fuzzy c-means, KG-FCM)을 제안한다. 전역 클러스터링은 클러스터링의 초기화를 위한 방법 중 하나로, 순차적으로 클러스터를 하나씩 추가함으로써 초기화에 민감한 FCM의 한계를 극복할 수 있도록 해준다. FCM의 잡음 민감성과 볼록한 클러스터들만 다룰 수 있는 한계를 극복하기 위한 방법은 여러 가지가 있으며 커널 클러스터링이 그 중 하나이다. 커널 클러스터링은 사용하는 커널을 바꿈으로써 쉽게 확장이 가능하므로 이 논문에서는 커널 클러스터링을 사용하였다. 두 방법을 결합함으로써 제안한 방법은 위에서 언급한 문제점들을 해결할 수 있으며, 이는 가상 및 실제 데이터를 이용한 실험 결과를 통해 확인할 수 있다.
본 논문은 컬러영상내 움직이는 객체의 효과적인 검출을 위해 색상과 위치정보를 적용시킨 K-means 클러스터링 알고리즘을 이용하여 움직이는 객체들을 추출한 방법을 제안하고 있다. 최종 클러스터링된 중심픽셀(prototype)이 갖고있는 RGB 값을 사용해 프레임을 비교해 객체와 배경의 분리를 가능하게 했고 마지막으로 후처리를 이용해 남아있는 배경잡음을 제거하였다. 본 연구의 실험은 여러 교통장면을 포함한 다양한 영상에서 이루어졌으며 실험결과 제안된 알고리즘은 기존의 픽셀이나 블록기반의 방법에 비해 보다 정확한 객체 검출이 가능했으며 한 가지 특징 정보를 사용한 클러스터링에 비해 보다 높은 정확도를 보였다.
본 논문에서는 클러스터 간의 중복을 허용한 계층적 클러스터링(hierarchical clustering) 기법에 적합한 클러스터 간 유사도 평가방법(linkage metric)을 제안하였다. 클러스터 간 유사도 평가방법은 계층적 클러스터링에서 클러스터를 통합하거나 분해하는데 쓰이며 사용된 방법에 따라 클러스터링의 결과가 다르게 형성된다. 기존의 클러스터 간 유사도 평가방법인 single linkage, complete linkage, average linkage 중 single linkage와 complete linkage는 클러스터 간 중복이 허용된 환경에서 정확도가 낮은 문제점이 있고, average linkage는 정확도가 두 방법에 비해 높지만 계산 시간 소요가 크다는 단점이 있다. 따라서 본 논문에서는 기존의 average linkage를 개선하여 중복된 데이터에 의한 필요 계산량을 크게 줄임으로써 시간적 성능이 우수한 클러스터 간 유사도 평가방법을 제안하였다. 또한, 제안된 방법을 기존 방법들과 비교 실험하여 중복을 허용하는 계층적 클러스터링 환경에서 정확도는 비슷하거나 더 높고, average linkage에 비해 계산량이 감소됨을 확인하였다.
네트웍 기반의 컴퓨터 보안이 컴퓨터 보안분야의 중요한 문제점으로 인식이 된 이래 네트웍 기반의 침입탐지 방법 중 클러스터링(Clustering)을 이용한 비정상 탐지기법(Anomaly detection)을 사용하는 시도들이 있었다. 네트웍 데이터 같은 대량의 데이터의 처리에 클러스터링을 통한 방법이 효과적인 결과를 나타내었음이 다수의 논문에서 제기되어왔으나 이 모델에서의 클러스터링 방법은 네트웍 정보로부터 추출한 정보들을 정상적인 클러스터들과 그렇지 않은 클러스터들 크게 두 집단으로 나누는 방법을 택했었는데 침입탐지율에서 만족할만한 결과를 얻지 못했었다. 본 논문에서 제안하고자 하는 모델에서는 이를 좀 더 세분화하여 네트웍 서비스(Network service)별로 정상적인 클러스터들과 그렇지 않은 클러스터들을 가지게되는 방법을 적용하여 기존 모델에서의 침입탐지율 결과의 개선을 도모해 보고자한다.
센서 네트워크 클러스터링 기법은 네트워크의 수명연장에 효율적인 방법이다. 이에 많은 연구에서 효율적인 클러스터링 기법을 제안해 왔으며 지금도 진행 중에 있다. 그러나 기존에 제시된 연구 결과는 센서 노드가 수집하는 데이터가 단일 데이터가 아닌 다중 데이터일 경우, 즉 센서 노드에 여러 개의 센서가 장착되어 있을 경우 데이터 수집 및 전송에 있어 단일 데이터에 비해 비효율적으로 동작 할 수 있다. 이에 본 논문은 다중 센서로부터 수집되는 데이터의 효율적인 전송을 지원하는 클러스터링 기법 개발을 위해 고려해야 할 사항에 대해 연구하였다. 연구 결과, 우리는 센서가 수집하는 데이터의 관심도, 데이터 변화량, 데이터의 내부적인 처리방법, 센서 노드의 배치 밀도 및 데이터 수집 장치의 감지범위가 다중 데이터 센서 네트워크의 클러스터링 기법 설계에 고려되어야 함을 보였다.
불변 특징 기반의 파노라마 생성 방법은 직접 방법에 비해 비교적 처리 속도가 빠르다. 파노라마 생성 과정에서 특징점 추출과 특징 정합에 대부분의 시간이 소요된다. 본 논문에서는 파노라마 생성을 위한 특징점 클러스터링 방법을 제안한다. LoG 영상에서 특징점들을 추출한 후, 클러스터링을 통해 특징점들을 군집화한다. 군집도가 강한 특징점들은 그렇지 않은 특징점들보다 더 의미 있으므로, 파노라마 생성에서 군집도가 약한 군집을 배제함으로써 정확도가 높아지고 처리 시간이 빨라지는 장점이 있다. 실험에서 $320{\times}240$ 크기의 칼라 영상에 대해 제안한 방법의 처리 시간이 약2.0초로 클러스터링 처리를 하지 않는 방법에 비해 약 2배 빠른 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.