• Title/Summary/Keyword: 비파괴 측정장비

Search Result 60, Processing Time 0.019 seconds

Evaluation and Determination of Air Void for Asphalt Concrete using a dielectric constant measurement (유전율 측정을 통한 아스팔트 콘크리트의 공극률 추정 연구)

  • Kim, Boo-Il;Kim, Yeong-Min;Cho, In-Sun
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.95-104
    • /
    • 2009
  • This study was conducted to evaluate the relationship between the dielectric constant and air void of asphalt concrete. Standard specimens that have air voids of various range $(0%{\sim}20%)$ were used to measure the dielectric constant using parallel plate method that measures low frequency dielectric constant. From the tests, dielectric constant of asphalt concrete was tend to decrease as the frequency was increased, and the decrement slope was varied with the types of asphalt binders. Dielectric constant was decreased linearly as air void was increased from zero to twenty percent. Consequently, the effect of temperature and moisture content on dielectric constants of asphalt concrete was evaluated to develop the standard curve between dielectric constant and air void of asphalt concrete. The standard curve developed in this study can be used to calibrate or develop the algorithm of non-destructive density gauge.

  • PDF

Characteristics Testing of the ECT Bobbin Probe for Steam Generator Tube Inspection of Nuclear Power Plant (원전 증기발생기 전열관 와전류검사 보빈탐촉자의 특성 시험)

  • Nam, Min-Woo;Lee, Hee-Jong;Cho, Chan-Hee;Yoo, Hyun-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.386-395
    • /
    • 2010
  • The steam generator management program(SGMP) has recently defined the procedures for the qualification of eddy current hardware and technique. These procedures provide two basic methods for qualification. The first way is to qualify the equipment or the probe by using the flaw mechanism and method of the pulled tubes from the heat exchangers or the artificial flawed tubes. The second way is to verify the equivalency with the characteristics of the qualified equipment or probe. In this case, the qualified equipment or probe may be modified to substitute or replace instruments or probes without re-qualification provided that the range of essential variables defined in the examination technique specification sheet are met. This study is to describe the result of the comparative performance evaluation of bobbin coil eddy current probes manufactured by KEPCO Research Institute and probes manufactured by a foreign manufacturer. As a result of this study, although there were minor differences between the two kinds of probes, it was evaluated that the two kinds of probes were almost identical in the significant performance characteristics described in the KEPCO Research Institute guideline.

Feasibility Study on Diagnosis of Material Damage Using Bulk Wave Mixing Technique (체적파 혼합기법을 이용한 재료 손상 진단 적용 가능성 연구)

  • Choi, Jeongseok;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • Ultrasonic nonlinear evaluation is generally utilized for detection of not only defects but also microdamage such as corrosion and plastic deformation. Nonlinearity is determined by the amplitude ratio of primary wave second harmonic wave, and the results of its comparison are used for evaluation. Owing to the experimental features, the experimental nonlinearity result contains system nonlinearity and material nonlinearity. System nonlinearity is that which is unwanted by the user; hence, it acts as an error and interrupts analysis. In this study, a bulk wave mixing technique is implemented in order to minimize the system nonlinearity and obtain the reliable analysis results. The biggest advantage of this technique is that experimental nonlinearity contains less system nonlinearity than that for the conventional nonlinear ultrasonic technique. Theoretical and experimental verifications are performed in this study. By comparing the results of the bulk wave mixing technique with those of the conventional technique, the strengths, weaknesses, and application validity of the bulk wave mixing technique are determined.

Evaluation of luminance performance of scintillating film for monitoring the position of a radioactive source in an NDT apparatus (비파괴검사 장치 내 방사선원 위치감시용 섬광필름의 발광성능 평가)

  • Lee, Kyung-Jin;Yun, Jeong-Ick;Park, Byung-Gi;Kim, Sin;Lee, Bong-Soo
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.13-17
    • /
    • 2005
  • In domestic nondestructive testing(NDT) field, there have recently been radiation exposure accidents due to a disregard for confirmation of the position of radioisotope during the test. In order to prevent these kinds of accidents, a scintillating film has been developed. The scintillating film that can convert gamma-ray to visible light has a function of the position detection of radioisotope in a opaque guide tube of an NDT apparatus. The aim of this study is to enhance the visibility performance of the scintillating film and find out the best configuration of the scintillating film. In order to find appropriate materials for the scintillating film, various inorganic scintillating materials were evaluated in this work. An absolute luminance of the scintillating films was measured by luminance meter for evaluation of visibility performance. Ir-192 gamma projector was used for NDT apparatus. The experiment shows that the scintillating film with reflective layer was the more effective performance for visibility. The higher mixing ratio of scintillating material to binding material, the higher luminance was measured. $Gd_2O_2S(Tb)$ inorganic powder as the scintillating materials had the best performance for visibility of the scintillating film. The developed scintillating film helps to ensure safer environment to the operators.

  • PDF

Physical and Mechanical Characteristics of Subgrade Soil using Nondestructive and Penetration Tests (비파괴시험과 관입시험에 의한 노상토의 물리·역학적 특성)

  • Kim, Kyu-Sun;Kim, Dong-Hee;Fratta, Dante;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.19-27
    • /
    • 2011
  • This paper evaluates the applicability of wave-based nondestructive methodologies and a penetration test for compaction quality measurements during road construction. To evaluate the physical and mechanical properties of compacted subgrade soil layers, soil stiffness gauge (SSG), time domain reflectometry (TDR), and miniature electro-mechanical systems (MEMS) accelerometers were used to nondestructively evaluate the soil response during and after compaction and dynamic cone penetrometer (DCP) profiles were used to evaluate the soil shear strength after compaction was completed. At the field site, two types of soils were compacted with four different compaction equipments and energies. Field testing results indicate that soil parameters evaluated by different testing methods, which are SSG, TDR, MEMS accelerometer, and DCP, are highly correlated. In addition, it is shown that the physical and mechanical tests deployed in this study can be used as alternative methods to the conventional compaction quality evaluation methods when assessing the overall quality and the engineering response of compacted lifts.

Pre-service Acoustic Emission Testing for Metal Pressure Vessel (금속압력용기의 사용 전 음향방출시험)

  • Lee, Jong-O;Yoon, Woon-Ha;Lee, Tae-Hee;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.280-284
    • /
    • 2003
  • The field application of acoustic emission(AE) testing for brand-new metal pressure vessel were performed. We will introduce the test procedure for acoustic emission test such as instrument check distance between sensors, sensor location, whole system calibration, pressurization sequence, noise reduction and evaluation. The data of acoustic emission test contain many noise signal, these noise can be reduced by time filtering which based on the description of observation during AE test.

표준기용 Spectroscopic Ellipsometer 제작

  • 조용재;조현모;김현종;신동주;이윤우;이인원
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.38-39
    • /
    • 2002
  • Spectroscopic ellipsometer(SE)는 박막의 두께, 굴절률, 흡수율, 에너지 갭, 결정상태, 밀도, 표면 및 계면의 거칠기 등에 관한 유용한 정보들을 제공한다. (1-3) SE는 빛을 탐침으로 사용하기 때문에 비파괴적이고 비접촉식 박막물성 측정방법이며 편광변화에 대한 상대적 물리량을 측정함으로써 정밀도와 재연성이 매우 높은 장점들을 갖고 있다. 따라서 SE는 반도체 메모리 소자, 평판 디스플레이, DVD와 CD와 같은 데이터 저장장치 등을 제작하는 공정에서 박막에 관련된 공정계측장비로 사용되고 있다. 특히, 최근의 차세대 반도체 소자 개발에 관한 연구 등(4-6)에서는 수 nm 두께의 다양한 초박막들에 관한 물성연구가 주관심사이기 때문에 최고의 성능을 갖는 계측장비와 기술이 요구되고 있다. 따라서 본 연구에서는 그림과 같은 편광자(polarizer)-시료(sample)-검광자(analyzer)로 구성된 PSA구조의 표준기용 rotating-analyzer SE를 제작하게 되었다. 현재까지 개발된 ellipsometer의 수많은 종류들 중에서 null 형, rotating element 형, 그리고 phase modulation 형이 가장 많이 사용되고 있다. 여기서 element란 polarizer, analyzer, 또는 compensator와 같은 광 부품들을 지칭하는데 이 중 하나 또는 둘을 회전시키기 때문에 그 종류 또한 매우 많다. 이들 중에서 회전검광자형 ellipsometer는 입사각 정렬이 우수하고, 파장에 무관한 편광기만 사용하므로 비교적 넓은 광량자 에너지영역에서 정확도 높은 데이터를 얻을 수 있기 때문에 박막 상수의 정밀측정에 가장 적합하다. 특히, 본 연구에서 제작된 ellipsometer에는 간섭계 장치, polarizer tracking,(2) zone average,(1) 그리고 low-pass filter 등을 사용함으로써 측정오차를 최대한 줄이는 노력을 하였다.

  • PDF

Experiments on the Detection of Delamination in FRP Reinforced Concrete (탄소섬유 보강 콘크리트의 박리 탐사 실험)

  • Rhim, Hong-Chul;Jung, Hang-Chul;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2007
  • With a growing concern about the state of infrastructure worldwide, the demand for the development of reliable nondestructive testing techniques (NDT) is ever increasing. Among possible NDT techniques, microwave method is proven to be effective in fast and non-contact inspection of concrete structures and inclusions inside concrete. It is also found that the microwave method has a potential in detecting the delamination between fiber reinforced polymers (FRP) plate and concrete. On the other hand, ultrasonic method can be another way to find the delamination. In this paper, the research work needed for the development of a reliable microwave method and ultrasonic method is studied in the measurements of concrete specimens reinforced with FRP. Concrete specimens are made with FRP and artificial delamination inside. A microwave measurement system with hom antennas with high center frequency and broad frequency bandwidth are used to image inside concrete specimens for the detection of debonding between concrete and FRP. Also, ultrasonic method is used for the same condition. Both results are compared with each other.

Design of Load and Strain Measuring Equipment Using Strain Gage, Instrumental Differential Amplifier and A/D Converter in a Truss System (스트레인 게이지 계측용 차동 증폭기와 A/D 변환기를 이용한 트러스 구조물의 내력 측정 장치 설계)

  • Baek, Tae-Hyun;Lee, Byung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.217-224
    • /
    • 2008
  • Trusses are found in many common structures such as bridges and buildings. The truss is a fundamental design element in engineering structures and it is important for an engineer to apply the truss design to engineering structures by understanding the mechanics of truss element. In an experimental course, the experiment selves as an example of the usefulness of the Wheatstone bridge in amplifying the output of a transducer. With the apparatus described here, it is possible to obtain experimental measurements of forces in a truss member which agree within errors to predictions from elementary mechanics. The apparatus is inexpensive, easy to operate, and suitable as either a classroom demonstration or student laboratory experiment. This device is a small table-top experiment. The conventional strain measuring device is costly and complicated - it is not simple to understand its structure. Hence, strain gage and the A/D converter are assembled to come up with a load and a strain measuring device. The device was tested for measuring the strain in a loaded specimen and the results were compared to those predicted by theory of mechanics.

Diagnosis of Pipe Structures using Impedance Measurement Sensor nodes (임피던스 측정 센서 노드를 이용한 배관 설비 진단)

  • Jang, In-Hwan;Jeong, Yeon-Wook;Song, Byung-Hun
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.367-369
    • /
    • 2009
  • 본 논문은 저전력 무선 임피던스 기반 구조물 건전성 감시 USN 시스템을 활용하여 electro-mechanical Impedance 센서의 일종인 PZT센서를 부착한 배관 구조물의 건전성을 진단하는 방법과 그 실험 결과에 대해 소개 한다. 기존에는 건설구조물에 가해지는 전기적인 입출력비에 해당하는 임피던스를 계측하기 위해서 비교적 고가의 대형 계측 장비가 필요로 했으며, 구조물에 설치된 센서를 계측장비에 연결하기 위한 유선의 케이블 작업 역시 추가로 필요했었다. 대형 배관 구조물의 경우에는 이러한 문제점 때문에 임피던스를 이용한 능동형 센서가 제대로 활용되지 못하고 있고 비정기적인 비파괴검사에만 국한되어 사용되어 왔다. USN기술은 저전력 소출력 무선통신을 통해 기존의 계측시스템과는 다른 상시모니터링의 장점을 가지고 있는 기술로서 최근 토목/건설 분야에서 적극적으로 활용이 되는 융합기술이다. 본 논문에서 구조물 건전성 감시 분야와 저전력 무선 계측 기술의 통합을 통해 얻어진 최적화된 배관 건전도 진단 센서 노드의 효율성을 정량적 실험 데이터를 통해 입증하고, 앞으로의 연구 방향에 대한 제안으로 끝을 맺는다.

  • PDF