• Title/Summary/Keyword: 비파괴측정

Search Result 1,051, Processing Time 0.03 seconds

Measurements of Ultrasonic Velocity and Attenuation by Signal Processing Techniques in Time and Frequency Domains (시간 및 주파수 영역에서의 신호 처리 기술에 의한 초음파 속도와 감쇠의 측정)

  • Jang, Young-Su;Kim, Jin-Ho;Jeong, Hyun-Jo;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.118-128
    • /
    • 1999
  • There are many ultrasonic measurement methods that are used in nondestructive testing applications. Some typical applications include material property determination, microstructural characterization. and flaw detection. Ultrasonic parameters such as velocity and attenuation are most commonly required in these applications. The accuracy and repeatability of testing results are dependent on both the hardware used to generate and receive the ultrasonic waves and on the analysis software for calculating these parameters. In this study, five analysis algorithms were implemented on a computer for measuring wave speed in a pulse echo. immersion testing configuration. In velocity measurements comparisons were made between the overlap. cross-correlation. Fourier transform. Hilbert transform, wavelet transform algorithms. Velocity measurement was applied to an isotropic steel sample using the five analysis algorithms. Frequency-dependent phase/group velocity and attenuation were also measured using the Fourier transform and wavelet transform algorithms on a composite laminate containing voids.

  • PDF

The Measurement of Junction Depth by Scanning Electron Microscopy (전자현미경에 의한 확산 깊이 측정)

  • 허창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.623-626
    • /
    • 2004
  • The purpose of this paper is to determinate and to confirm p-n junction depth with nondestructive method by using electron beam. By measuring the critical short circuit current on the p-n junction which induced by electron beam and calculating generation range, the diffusion depth can be obtained. It ran be seen that values destructively measured by constant angle lapping and nondestructively by this study almost concur. As this result, it is purposed that diffusion depth of p-n junction can be easily measured by non-destruction. And this nondestructive method ran be recommended highly to the industrial analysis.

  • PDF

The Present Status and Problem on Application of Nondestructive Testing (국내에서의 비파괴검사 실시 현황 및 그 문제점)

  • 이준현
    • Journal of the KSME
    • /
    • v.35 no.6
    • /
    • pp.495-503
    • /
    • 1995
  • 기계구조물의 건전성 및 잔존수명 평가를 수행하기 위하여서는 먼저 고감도, 고정도의 결함평 가가 필수적이나 대부분의 경우 가동중의 기계구조물로부터의 재료손상평가를 위한 시험편을 채취하는 것은 곤란하기 때문에 비파괴적 기법의 도입이 불가결한 실정이다. 그러나 성수대교 붕괴사고 등과 같은 최근 국내에서 발생한 파손사고의 대부분은 그 사고의 기분원인이 구조물 내부에 발생한 결함들에 대한 측정이 수행되지 않았음은 물론 나아가 이에 대한 근본적인 원인은 국내에서의 비파괴 검사실시에 대한 제도적인 문제에 기인한다. 따라서 여기서는 최근 기계 및 구조물의 안전성 확보에 이써서 필수불가결한 기술인 비파괴검사에 대한 국내의 실시 현황 및 그 문제점 등을 주로 제도적인 관점에서 미국 및 일본 등의 선진국과 비교함으로써 기술하고자 한 다.

  • PDF

Degradation Evaluation of 2.25Cr-1Mo Steel Using Magnetic Properties Changes (자기적 특성을 이용한 2.25Cr-1Mo 강의 열화도 평가)

  • 김정민;손대락;남승훈;김동진;김정태
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.228-229
    • /
    • 2002
  • 고온에서 장시간 사용된 재료는 재질의 열화현상으로 인하여 재료의 인성이나 물성이 저하되고 재료의 수명이 한계를 가지게 된다. 이러한 열화 되는 물리적, 기계적 특성 변화는 파괴적 또는 비파괴적 방법에 의해 측정이 가능하다. 비파괴적 방법은 대상기기의 평가부위가 한정된다는 단점이 있으나 실제 사용기기를 훼손하지 않고 재료의 상태를 파악할 수 있는 장점이 있기 때문에 파괴적 방법에 비하여 효율적이다. 재료의 인성이나 물성의 저하를 평가하는 여러 가지 비파괴적 방법들이 있지만 장시간 사용에 따른 열화정도를 판별할 수 있는 정량적인 비파괴적 방법은 아직까지 큰 성과를 얻지 못하고 있다. (중략)

  • PDF

Instrumented Indentation Technique: New Nondestructive Measurement Technique for Flow Stress-Strain and Residual Stress of Metallic Materials (계장화 압입시험: 금속재료의 유동 응력-변형률과 잔류응력 평가를 위한 신 비파괴 측정 기술)

  • Lee, Kyung-Woo;Choi, Min-Jae;Kim, Ju-Young;Kim, Kwang-Ho;Kwon, Dong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.306-314
    • /
    • 2006
  • Instrumented indentation technique is a new way to evaluate nondestructive such mechanical properties as flow properties, residual stress and fracture toughness by analyzing indentation load-depth curves. This study evaluated quantitatively the flow properties of steels and residual stress of weldments. First, flow properties can be evaluated by defining a representative stress and strain from analysis of deformation behavior beneath the rigid spherical indenter and the parameters obtained from instrumented indentation tests. For estimating residual stress, the deviatoric-stress part of the residual stress affects the indentation load-depth curve, so that by analyzing the difference between the residual-stress-induced indentation curve and residual-stress-free curve, the quantitative residual stress of the target region can be evaluated. The algorithm for flow property evaluation was verified by comparison with uniaxial tensile test and the residual stress evaluation model was compared to mechanical cutting and ED-XRD results.

Corrosion Level Measurement Technique for RC Reinforcement Using Non-Destructive Test Methods (비파괴기법을 이용한 철근 콘크리트 벽체 철근의 부식률 예측기법)

  • Roh, Young-Sook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2011
  • In order to measure corrosion level of reinforcement rebar in RC structures, non-destructive test methods which are concrete surface current density method and infrared thermographic technique were employed to measure corrosion levels. Experimental test parameters were various levels of corrosion states(0, 1, 3, 5, 7% of weight loss) and concrete cover depth(30 mm, 40 mm) and two different reinforcing rebar arrangements. The larger amount of concrete surface current density, the higher corrosion level in reinforcement rebar. The laboratory conditions which are ambient temperature and humidity have negligible effect on the infrared thermographical data. After analysis of current density and temperature distribution from concrete surface, corrosion level of reinforcement rebar embedded in concrete can be measured qualitatively based on the amount of electric current and heat flux.

Fiber Volume Fraction Measurement of Fiber Reinforced Plastics by Using Gamma-Ray (감마선을 이용한 복합재료의 섬유체적분율 측정)

  • Jang, J.H.;Cho, K.S.;Chang, H.K.;Park, J.H.;Lee, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.3
    • /
    • pp.151-155
    • /
    • 1997
  • In this research, nondestructive test using a radioisotope, $^{241}Am$ gamma-ray, was accomplished in order to evaluate the fiber volume fraction of the accumulated composite layers such as glass fiber/epoxy and carbon fiber/epoxy. Attenuation coefficients of the fiber and resin were measured respectively by NaI(T1) detector The fibers volume fraction was measured for various thickness of composite layers between 2 and 20mm. Fiber volume fraction of the composite layers were also measured for various amount of fibers. The experimental errors from nondestructive test using gamma-ray were in the range of ${\pm}1{\sim}2.5%$ in comparison with those from observation by optical microscopy. By selecting the optimum energy and activity of radioisotope, this method can provide a new means for the evaluation of the fiber volume fraction.

  • PDF

A Study on the Measurement of Foreign Material in Dissimilar Metal Contact Using Pulse Laser and Confocal Fabry-Perot Interferometer (펄스 레이저와 CFPI를 이용한 이종금속 접촉부의 이물질 측정에 관한 연구)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.160-164
    • /
    • 2013
  • A laser ultrasonic inspection system is a non-contact inspection device which generates and measures ultrasonics by using laser beam. A laser ultrasonic inspection system provides a high measurement resolution because the ultrasonic signal generated by a pulse laser beam has a wide-band spectrum and the ultrasonic signal is measured from a small focused spot of a measuring laser beam. In this study, galvanic corrosion phenomenon was measured by non-destructive and non-contact method using the laser. The case of mixed foreign material on the part of corrosion was assumed and laser ultrasonic experiment was conducted. Ultrasonic was generated by pulse laser from the back side of the specimen and ultrasonic signal was acquired from the same location of the front side using continuous wave laser and Confocal Fabry-Perot Interferometer(CFPI). The characteristic of the ultrasonic signal of exist foreign material part was analyzed and the location and size of foreign material was measured.

A Evaluation of Shielding Deficiency by Means of Gamma Scanning Test (Gamma Scanning Test에 의한 대단위 차폐체의 결함 평가 연구)

  • Lee, B.J.;Seo, K.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.4
    • /
    • pp.228-236
    • /
    • 1995
  • In this paper the method to evaluate shielding deficiency by gamma scanning test was presented and verified theoretically by Monte Carlo code which is one of the best effective method for radiation shielding calculation. The cylindrical shielding model was selected to evaluate shielding deficiency by gamma scanning test. First, the reference shielding according to the design requirement of cask was fabricated specially and reference values were measured with Co-60 source and scintillation detector. As a result with which calculated the reference values, it is shown that maximum deficiency thickness for lead of true cylindrical shielding model was 12mm. To verify this, thickness of lead was calculated by MCNP code and maximum deficiency thickness was 11.6mm. The experimental result obtained by the use of reference shielding was in good agreement with the theoretical result within 4.1%. So, this method can be applied to inspect the shielding ability for great shielding or cask which the radioactive material is used. To perform measurement more exactly, the further work on the development of measuring equipment to display the results on the screen will be required.

  • PDF

Thickness Measurement of Ni Thin Film Using Dispersion Characteristics of a Surface Acoustic Wave (표면파의 분산 특성을 이용한 Ni 박막의 두께 측정)

  • Park, Tae-Sung;Kwak, Dong-Ryul;Park, Ik-Keun;Kim, Miso;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.171-175
    • /
    • 2014
  • In this study, we suggest a method to measure the thickness of thin films nondestructively using the dispersion characteristics of a surface acoustic wave propagating along the thin film surface. To measure the thickness of thin films, we deposited thin films with different thicknesses on a Si (100) wafer substrate by controlling the deposit time using the E-beam evaporation method. The thickness of the thin films was measured using a scanning electron microscope. Subsequently, the surface wave velocity of the thin films with different thicknesses was measured using the V(z) curve method of scanning acoustic microscopy. The correlation between the measured thickness and surface acoustic wave velocity was verified. The wave velocity of the film decreased as the film thickness increased. Therefore, thin film thickness can be determined by measuring the dispersion characteristics of the surface acoustic wave velocity.