• Title/Summary/Keyword: 비파괴적 표면조직검사

Search Result 12, Processing Time 0.016 seconds

Evaluation of the Thermal Degradation in Co-based Superalloy using High frequency Transducer of Scanning Acoustic Microscope (초음파현미경의 고주파 초음파 탐촉자를 이용한 코발트기 초내열합금강의 열화평가)

  • Park, Ik-Keun;Cho, Dong-Su;Kim, Yong-Kwon;Lim, Jae-Seang;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.518-524
    • /
    • 2004
  • The feasibility of Y(z) curve method of scanning acoustic microscope using high frequency transducer was experimentally studied for assessment of the thermal degradation in Co-based superalloy. Thermal degradation was performed to simulate the microstructural changes in Co-based superalloy arising from long term exposure at high temperature. Longitudinal wave velocity measured by pulse echo method using 10MHz transducer and leaky surface acoustic wave (LSAW) velocity measured by V(z) curve method using 200MHE transducer were measured to investigate the effect on thermal degradation. Ultrasonic velocity decreased as the aging time increased in both ultrasonic waves. Moreover, the low frequency longitudinal wave velocity decreased a little. Otherwise, the high frequency LSAW velocity drastically decreased up to a maximum of 4.7% at the aging time of 4,000hours. A good correlation was found between LSAW and Vickers hardness. Consequently, V(z) curve method of SAM using high frequency transducer could be a potential tool for assessing thermal degradation.

Scanning Acoustic Microsope System Using 200MHZ ZnO Transducer (ZnO를 이용한 초음파 현미경의 제작과 평가)

  • Jang, Ji-Won;Do, Si-Hong;Lee, Jong-Gyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.4
    • /
    • pp.200-208
    • /
    • 1989
  • To the purpose of preparation for investigating aspect of material that not revealed by the light microscope and extending our knowledge in applicable field, a scanning acoustic microscope system of 200MHz was organized and appraised its performance with experiments. Professor N.CHUBACHI in Tohoku University in Sendai, Japan provided the ZnO transducer with lens. The system for transmitting and receiving ultrasonic pulses of 200nsec was organized with a rectangular audio wave generator for modulation of 200MHz carrier wave, gating system for transmitting and receiving, mixer for converting intermediate frequency, a directional coupler, ZnO transducer, radio frequency amplifiers. detecter and personal computer. The Scanning system was driven in micro steps with three stepping motors in the direction of x, y and z axes. The system was a reflecting type scanning acoustic microscope and the operation program processed graphics data from receiving echo intensities. Photograph of fish scale obtained by optical microscope was compared with its image by the scanning acoustic microscope organized here. The result was satisfiable.

  • PDF