• Title/Summary/Keyword: 비틀림진동 실험장치

Search Result 7, Processing Time 0.019 seconds

Experimental Equipment for Torsional Vibration of Marine Propulsion Shafting (선박용 추진축계 비틀림진동 실험장치의 소개)

  • Kim, S.H.;Kim, J.G.;Lee, D.C.;Park, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.149-153
    • /
    • 2005
  • Marine Propulsion shafting system coupled with medium diesel engine forms multi-degree torsional vibration system which consist of many inertia masses such as crank, flywheel, propeller and sometimes gear system is adopted additionally for the purpose of improving propeller's propulsion efficiency or connecting with PTO/PTI. The periodic excitation torques generated by combustion pressure in cylinder and reciprocating masses induce various kinds of vibrations in this shafting system. If the frequency of this excitation torques is equal to the natural frequency of the shafting, the amplitude of the torsional vibration increases steeply and the damage of crankshaft or gears may be occurred by that. This frequency is called critical speed. When making a plan for shafting system, it is important for this frequency to be expected exactly and not to be in commonly used speed. For this reason, this paper introduces the experimental equipment for torsional vibration of marine propulsion shafting system and describes the theoretic and the experimental methods to look for natural frequencies.

  • PDF

Diminution of birdge vibration for high-speed trains (고속철도 교량의 진동저감)

  • Choi Eun-Suk;Chin Won-Jong;Lee Jung-Woo;Kwark Jong-Won;Kang Jae-Yoon;Kim Byung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.125-130
    • /
    • 2006
  • 고속철도 교량구간에 차량(KTS)이 주행할 경우 교량 바닥판에서는 큰 가속도 응답이 계측된다. 이러한 가속도의 원인으로는 큰 단면의 국부 진동, 일정한 간격의 침목의 충격 그리고 차량 자체의 진동 등 여러 가지 원인이 있다. BRDM(Bridge Design manual)에서는 이러한 동적 특성치들에 대한 제한치를 규정하고 있는데, 가속도인 경우는 0.35G이하고 규정하고 있다. 실교량 실험에 의해 계측된 가속도 응답은 규정한 제한치인 0.35G 보다는 작지만, 이러한 가속도 응답치들은 차량이 고속으로 주행할 경우 안전성에 문제를 일으킬 수 있다. 본 논문에서는 큰 단면에서 과도한 국부 진동을 지배하는 가속도 응답을 줄이기 위해서 진동저감 방법을 연구하였다. 비록 휨이나 비틀림 같은 전체 진동모드에는 효과가 작지만 일반적으로 매우 큰 단면을 가진 고속철도 프리스트레스트 상자형 교량의 국부진동인 날개짓 모드를 감소시키는데 진동저감 장치는 효과적이라고 판단된다. 실교량에서 진동저감장치의 실험은 추후 연구를 수행할 예정이다.

Effects of Hihh Amplitude Prestraining Vibrations on Shear Modulus of Sands (고 변형률 반복 진동이 모래의 전단 탄성계수에 미치는 영향)

  • ;Stokoe, K.H.Il
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-28
    • /
    • 1992
  • Recently, testing equipment which can run resonant column test altogether with the torsional shear test at the very highly controlled condition was developed at the University of Texas at Austin(U.S.A). With this equipment, the effects of high amplitude pre-straining vibrations on the dynamic properties of clean sands were studied. Tests showed the following results. Low amplitude shear modulus was gradually increased with little void ratio change as the number of high amplitude vibration cycles increased. Variation of volumetric strain with confining pressure for the pre -strained specimen under vibration was smaller than that of fresh specimen. Also the slope of the diagram for shear modulus and confining pressure relationship of the prestrained specimen was smaller than that of fresh specimens. These results agreed well with the analytical results.

  • PDF

Transmission characteristics of nonlinear torsional vibration of a rotating system with magnet coupling (평판 자기결합 회전장치의 비선형 비틀림 진동 전달 특성)

  • 서상준;전오성;은희준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.593-600
    • /
    • 1986
  • In direct contact power transmission from primary driver to a secondary follower system, one of the important problems is the vibration transmission. In some applications the reduction of vibration level at the follower as low as possible is utmost important. The magnetically coupled power transmission system is often used for this purpose. In this paper, we report the results of a study on the nonlinear torsional vibration transmission characteristics of the rotating system with face-type magnet coupling. The equation of motion is solved analytically up to 3rd harmonics. The frictional force of the sliding bearing which is used to support the follower shaft is considered as the damping term. Numerical calculations are carried out by the Newton-Raphson method, and the calculated results are compared with the experiment for face-type magnet coupling. The experimental result shows that the reasonant frequency of the magnet coupling is very low and is in good agreement with the theoretical result when the average damping constant per unit area of the sliding bearing is 0.5kg*f*sec/cm$^{3}$.

Fatigue Life Evaluation of Turbine Shaft Using Applied Shaft Stress (회전체 스트레스 정보를 이용한 터빈 축 피로수명 평가)

  • Jin, Byeong Kyou;Park, Ki Beom;Chai, JangBom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2014
  • The equipment or with a constant torque and a variable stress due to axial vibration such as the turbine-generator system in nuclear power plant show the fatigue fracture behavior. Thus this study whoul aim to measure the torsional stress and analyze the fatigue fracture behavior. To achieve this, we manufactured the equipment similar with turbine-generator system and applied various torsional vibration stress due to external load. In particular, the evaluation was conducted with the existing evaluation methods of the fatigue behavior of known stress-life, strain-life, crack growth assessment methods. With increasing the external load and independent methods tends to decrease the fatigue life was confirmed up to 10 times in 5 kV external load compared to without external load.

An Experimental Study on the dynamic behavior of 4-Span Cable-Stayed Bridge with ${\pi}$-Type Girder (${\pi}$형 거더를 가진 4경간 사장교의 동적거동에 관한 실험적 연구)

  • Cho, Jae-Young;Kim, Young-Min;Lee, Hak-Eun;Yoon, Ki-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.15-24
    • /
    • 2004
  • Generally, a ${\pi}$-type girder composed of two I-type girders is known to have a significant disadvantage in wind resistance design because of aerodynamic instability. A representative bridge for this girder was Tacoma Narrows Bridge. Since Tacoma Narrows Bridge had very low stiffness of the bridge structure and its cross-section shape had aerodynamic instability, the bridge collapsed after severe torsion and vibration events in 19m/s wind speed. Aerodynamic vibration can be avoided by enhancing structural stiffness and damping factor and conducting a study of cross-section shapes. This study shows the angle of attack for the four-span cable stayed bridge having ${\pi}$-type cross-section and describes the aerodynamic characteristics of the changed cross-section with aerodynamic vibration damping additions, by carrying out two-dimension vibration tests. As a result of uniform flow and turbulent flow, the study shows that because the basic ${\pi}$-type cross-section alone can have efficient wind resistant stability, there is no need to have additional aerodynamic damping equipment. Since this four 230m-main-span bridge has a large frequency and also has a big stiffness compared to other bridges containing a similar cross-section, it has aerodynamic stability under the design wind speed.

Robust Speed Control Scheme for Torsional Vibration Suppression of Two Mass System (이관성계 전동기 구동시스템의 축진동억제를 위한 강인한 속도제어기법)

  • 박태식;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.80-88
    • /
    • 2003
  • In this paper, the new robust torsional vibration suppression control scheme is proposed for the two mass system. A reduced order state feedback controller where the motor speed and the observed torsional torque are fed back and the PI controller are proposed as the torsional vibration suppression controller. Using the estimated mechanical parameters by off-line RLS(Recursive Least Square) algorithms, the speed controller for torsional vibration suppression is designed and its gains are determined using the Kharitonov robust control theory. The Kharitonov robust control theory can obtain the robust stability with a specified stability margin and a damping limit and the good performance of vibration suppression although if the parameters are varied within some specified limit. The effectiveness and usefulness of the proposed schemes are verified with the simulation and the experimental results on the fully-digitalized 5.5kW two mass system.