• Title/Summary/Keyword: 비탈면설계기준

Search Result 33, Processing Time 0.033 seconds

Sensitivity of Hydraulic Structures Design Parameter by Climate Change (기후변화에 의한 수공구조물 설계인자 민감도 연구)

  • Kong, Jung-Sik;Kim, UlAnYi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.419-419
    • /
    • 2011
  • 이상호우, 사막화, 빙하융해, 생태계 먹이사슬 변화, 이상기온 등 기후변화의 행태는 지구 곳곳에서 다양하게 발발되고 있으며 그로인해 발생되는 인적 물적 피해가 심각하다. 1996년 집중호우에 의한 연천댐체 파괴, 2002년 8월의 낙동강 유역 장기홍수, 2002년 태풍 루사 및 2003년 태풍 매미 등 국내에서는 기후변화 중에서도 주로 이상호우로 인해 발생하는 피해가 많았으며 이들은 주기성이나 특성을 갖지 않아 예측이 어려운 관계로 망양보뢰 식의 후처리에 급급한 실정이었다. 최근 기후변화에 따른 지역별 홍수량, 가뭄량 등에 관한 연구가 가속화되고 있으며, 이와 더불어 해당 기후모델 발현 시 기존 구조물에 미치는 영향에 대한 연구도 필수적이다. 나아가 기존 구조물 뿐 아니라 새로 시공되는 구조물의 설계에서 기후변화에 대한 안정성을 위해 추가적으로 포함해야 할 요소가 있는지에 대한 연구도 필요하다. 본 연구에서는 가상 기후모델에 대해 그 모델이 예측하는 홍수량이 실제 발현되었을 경우를 가정하여, 기존 수공구조물의 안정성에 미치는 영향을 살펴보고 영향인자의 민감도를 분석하고자 한다. 대상 수공구조물은 붕괴 시 영향력이 큰 정도를 기준으로 필댐, 콘크리트차수벽형석괴댐(CFRD), 콘크리트중력식댐, 제방으로 그 범주를 제한 하였으며 대상유역은 한강으로 가정하였다. 구조물의 안정성 검토방법은 각 구조물의 종류에 따라 상이하다. 흙이 주 재료인 제방과 필댐의 경우, 침투(Piping)와 비탈면(Sliding)에 대한 안정성 평가가 이루어지며 CFRD는 댐체와 벽체로 나누어 안정성평가를 하며 댐체 안정성 평가방법은 필댐과 유사하다. 본 연구에서는 하천설계기준(2009)과 댐설계기준(2005)에 따라 각 구조물의 기준안전율을 책정하였으며 점착력, 내부마찰각, 단위중량 등의 물성치는 해당 지역의 토질특성에 따라 여러 문헌을 참고하여 설정하였고 이를 SEEP/W, SLOPE/W 프로그램을 이용하여 구조해석을 실시하였다. 콘크리트중력식댐은 활동, 전도, 지지력에 대해 각각 안정성을 평가하며 MIDAS와 ABAQUS 프로그램을 병행하여 해석하였다. 민감도(Sensitivity)란 안정성에 영향을 미치는 설계인자들의 변화에 따라 안정성이 어떻게 변화하는 지를 말한다. 기후변화에 의한 수공구조물 설계인자 민감도 연구를 통해 기존 설계과정 또는 안정성 검토 시 해당인자의 기여도를 높이거나 새로운 설계인자를 추가하여 미래 상황에 대한 구조물의 위험 정도를 과거대비 상세히 예측할 수 있으며 나아가 적절한 대응 방안 제시에 기여하여 기후변화에 따른 피해를 감소할 수 있을 것이라고 생각된다.

  • PDF

Comparison of Domestic and Foreign Design Standards for Overall Stability of Soil Nailed Slopes (쏘일네일 보강 비탈면의 전체 안정성에 대한 국내외 설계기준 비교)

  • Kim, Tae-Won;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.6
    • /
    • pp.5-13
    • /
    • 2019
  • The international trend in soil nailed wall design has been evolved from the allowable stress design to limit state design and it is still currently ongoing. The design guidelines in Korea and Hong Kong still adopts the allowable stress design philosophy while those in others mostly do the limit state design. In this study, four soil nail design methods presented in the major design guidelines (U.S. FHWA GEC 7 (2015), Clouterre in France (1991), Soil nailing - best practice guidance in U.K. (CIRIA, 2005), Geoguide 7 in Hong Kong (2008) and Design standard for slope reinforcement work in Korea (KDS 11 70 15 f: 2016)) are described and analyzed in brief. The factor of safety and CDR (Capacity-to-Demand Ratio) which is used to measure the degree of conservatism of a design guide are obtained for the two cases. One is the design example presented in CIRIA (2005) and the other is in-situ loading test performed on the top of backfill of the soil nail wall to investigate the conservatism of design guidelines. It is revealed that the design method in overall stability of soil nail walls in domestic design method (CDR=0.78) is the most conservative and those by Clouterre (CDR=0.99, 1.09), Geoguide 7 (CDR=1.13, 0.97), U.S. FHWA (CDR=1.09, 1.07) and CIRIA (CDR=1.40, 1.16) in order from the second most conservative to the least conservative for the design example presented in CIRIA. For the in-situ loading test performed on the top of backfill of the soil nail wall, the order of conservatism is identical except that the places of Geoguide 7 (CDR=0.66, 0.72) and FHWA (CDR=0.73, 0.72) are changed. However, the results obtained among U.S. FHWA (2015) and Clouterre (1991) and Geoguide 7 (2008) are not so different.

Effects of Alkali-Activated Soil Stabilizer Binder Based on Recycling BP By-Products on Soil Improvement (BP부산물을 재활용한 알칼리활성화 지반개량재의 지반개량효과에 관한 연구)

  • Lee, Yeong-Won;Kang, Suk-Pyo;Kim, Jae-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.158-165
    • /
    • 2014
  • The enormous quantity of 'Bayer-Process by-products' (BP by-products) discharged by industries producing alumina from bauxite represents an environmental and economical problem. As it is mainly composed of $Fe_2O_3$, $Al_2O_3$, $SiO_2$, CaO and $Na_2O$, it is thought that using BP by-products as a construction material is an effective way to consume such a large quantity of alkaline waste. In this study, This study evaluates the effect of alkali-activated binder based on recycling BP by-products on soil improvement through the evaluation of slope stability and seepage flow numerical analysis. The results of analysis of ground slope safety at dry season and wet season meet standard (Ministry of Land, Infrastructure and Transport, 2006) Especially, when wet season, the ground used soil improving material meet standard, while the ground used soil-nailing method doesn't. Also, permeability coefficient of improved soil is smaller than that of natural soil and saturation depth of reinforced ground surface with improve soil is lower than that of natural soil.

Full Scale Hydraulic Experiment and Analysis for Hydraulic Characteristics of Revetment Blocks (호안블럭 수리특성에 대한 실규모 수리실험 및 분석)

  • Kim, Myoung-Hwan;Lee, Du-Han;Rhee, Dong-Sop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.667-667
    • /
    • 2012
  • 호안블록을 설치하는 목적은 제방의 비탈면 및 저수로 하안을 강수나 유수에 의한 침식작용으로부터 보호하는데 있다. 근래에 들어서는 친수성, 경관, 생태계 보전 및 재생 등과 같은 기능을 가진 다양한 호안블록의 시공이 이루어지고 있는데 이러한 국내 상황은 호안블록에 관한 수리적 연구와 안정성 검토의 필요성을 증가시키고 있다. 현재 국내에서는 호안의 설계 및 시공시에는 하천공사 표준시방서 등을 이용하고 호안블록 제작에는 콘크리트 표준 시방서 등을 이용하고 있다. 그리고 이런 시방서의 내용들은 호안블록 설치 후 호안의 안정성을 보장하는 듯 하다. 하지만 이는 모두 호안블록의 재료 및 설치 기준에 관한 지침서일 뿐이며, 어느것도 호안블록 설치 이후에 호안의 안정성을 보장하지는 않는다. 따라서 현재 국내 상황을 고려한 호안블록 주변의 수리특성에 관한 연구와 안정성 평가 기법의 개발은 매우 시급한 과제이다. 본 연구에서는 한국건설기술연구원 안동 하천실험센터 실규모 수로에 최근 미국과 일본에서 적용하고 있는 호안블록의 안정성 평가 지침을 참고하여 호안블록 시험구간을 설치한 뒤, 서로 다른 형태의 호안블록 두 종류에 대하여 실험을 수행하였다. 실험에 사용된 호안블록은 실재 현장에서 사용되는 블록과 동일한 제품을 사용하였다. 실험 결과 두 종류의 호안블록에서 모두 기반 토층의 침하 현상이 발견되었으며, 그 중에서 블록 중앙에 구멍이 있는 형태의 호안블록의 경우에는 구멍 내부에서 발생한 강한 세굴 현상이 침하로 이어져 결국에는 호안블록이 설치된 구간 전체가 파손되는 양상을 보였다. 또한 유속이 빠른 구간에서 블록의 파손이 더 심화되는 양상도 확인하였다.

  • PDF

Factor of Safety of Local Instability in Soil Nail Slopes (쏘일네일이 보강된 사면의 국부파괴에 대한 안전율 분석)

  • Koy, Channarith;Kim, Beom-Jun;Jang, Hyun-Ick;Lee, Sang-Rae;Yune, Chan-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.449-456
    • /
    • 2018
  • In this study, a soil nail design method for a stability analysis of local instability with nail reinforced slope was proposed. The failure mechanism of a local instability of slope was studied and a theoretical equation to estimate the stability of slope was developed. Using the developed equation, the stability analysis was performed according to installation conditions of soil nail such as a slope inclination, a thickness of soil layer, a nail inclination, and a nail spacing. Considering those design factors, a sensitivity analysis for each influence factors was conducted. Analysis results showed that the safety factor of reinforced slope with nail was higher than the slope without nail. In addition, the safety factor of slope according to ground condition was increased in the order of dry, saturated, and seepage condition.

A Study on Decision of Cut Rock Slope Angle Applied Shear Strength of Continuum Rock Mass Induced from Hoek-Brown Failure Criterion (Hoek-Brown 파괴기준에서 유도된 연속체암반의 전단강도를 적용한 깎기 암반사면 경사 결정 연구)

  • Kim, Hyungmin;Lee, Byokkyu;Woo, Jaegyung;Hur, Ik;Lee, Junki;Lee, Sugon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.13-21
    • /
    • 2019
  • There are many cuts or natural rock slopes that remain stable for a long time in the natural environment with steep slopes ($65^{\circ}$ to $85^{\circ}$). In terms of design practice, the rock mass consisting of similar rock condition and geological structures is defined as a good continuum rock slope, and during the process of decision making angle of this rock slope, it will be important to establish the geotechnical properties estimating method of the continuum rock on the process of stability analysis in the early stages of design and construction. In this study, the stability analysis of a good continuum rock slope that can be designed as a steep slope proposed a practical method of estimating the shear strength by induced from the Hoek-Brown failure criterion, and in addition, the design applicability was evaluated through the stability analysis of steep rock slope. The existing method of estimating the shear strength was inadequate for practical use in the design, as the equivalent M-C shear strength corresponding to the H-B envelope changes sensitively, even with small variations in confining stress. To compensate for this problem, it was proposed to estimate equivalent M-C shear strength by iso-angle division method. To verify the design applicability of the iso-angle division method, the results of the safety factor and the displacement according to the change in angle of the cut slope constructed at the existing working design site were reviewed. The safety factor is FS=16~59 on the 1:0.5 slope, FS=12~52 on the 1:0.3 slope, most of which show a 10~12 percent reduction. Displacement is 0.126 to 0.975 mm on the 1:0.5 slope, 0.152 to 1.158 mm on the 1:0.3 slope, and represents an increase of 10 to 15%. This is a slightly change in normal proportion and is in good condition in terms of stability. In terms practical the working design, it was confirmed that applying the shear strength estimated by Iso-angle division method derived from the H-B failure criterion as a universal shear strength for a good continuum rock mass slope was also able to produce stable and economic results. The procedure for stability analysis using LEM (Limit Equilibrium Analysis Method) and FEM (Finite Element Analysis Method) will also be practical in the rock slope where is not distributed fault. The study was conducted by selecting the slope of study area as a good rock condition, establishing a verification for which it can be applied universal to a various rock conditions will be a research subject later on.

A Study on Rainfall-induced Erosion of Land Surface on Reinforced Slope Using Soil Improvement Material (지반 개량재에 의한 보강사면의 강우시 표면침식에 관한 연구)

  • Kim, You-Seong;Kim, Jae-Hong;Bhang, In-Hwang;Seo, Se-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2013
  • Heavy rainfall intensity may cause shallow slope failures and debris flow by rill erosion and scour on land surface. The paper represents the difference between native soil (weathered soil) and reinforced soil, which is mixed by hardening agent with flyash as main material, for investigating experimental findings of rill erosion and erosion. Results obtained from artificial rainfall simulator show that erosion rate of reinforced soil mixed with hardening agent is reduced by 20% because an amount of eroded soil on slope surface is inversely proportional to the increase of soil strength. For example, rainfall of 45mm (at the elapsed time of 25mins in rainfall intensity of 110mm/hr) triggers rill erosion on native soil surface, but the rill erosion on reinforced soil surface does not even occur at 330mm rainfall (at the elapsed time of 3hrs in rainfall intensity of 110mm/hr). As a result of slope stability analysis, it was found that the construction method for reinforced soil surface would be more economical, easy and fast construction technology than conventional reinforcement method.

Analysis of Soil Saturation Characteristics According to the Presence or Absence of Soil Layer Depth and Impervious (침투해석시 토층심도 및 불투수층 유무에 따른 지반의 포화특성 분석)

  • Lee, Seung Woo;Chang, Bhum Soo;Kim, Yong Soo;Lee, Jong Gun;Lee, Ju Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In recent study, infiltration analysis considering rainfall intensity is more economical and practical than existing analysis method. Revised construction slope design standard is also stated to full-fill infiltration analysis considering rainfall for practical stability review. Infiltration analysis considering rainfall for practical stability review. But, to infiltration analysis, the process is complicated by ground impermeability and rainfall intensity. In this study, we perform infiltration analysis to charge infiltration conditions, soil type and rainfall characteristics, for more pratical stability review. Using the result, we can suggest construable condition on the assumption that soil is saturated up to surface zone.

A Study on Design Criteria of Rockfall Protection Fence Considering Reliability Index (신뢰성지수를 고려한 낙석방지울타리 설계기준 고찰)

  • Suk, JaeWook;Lee, JongGun;Kim, YongSoo;Moon, JoonShik
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.275-281
    • /
    • 2014
  • The performance criteria of rockfall protection fence and reliability index were investigated considering characteristic of rockfall energy occurred at 160 cut slopes in national highway. As a result of study on statistic of variables that decide rockfall energy using Monte-Carlo simulation, the degree of slope was normal distribution type, mass of rockfall and height of slope was lognormal distribution type. The rockfall energy follows lognormal distribution because of statistical characteristic of mass of rockfall. The reliability index of rockfall protection fence was 0.678 and the failure probability of was very high as 24.9%. Proposed performance criteria of rockfall protection fence considering the scale of domestic rockfall energy is maximum 500 kJ and the range of reliability index was from 1.028 to 1.956. the failure probability of rockfall protection fence was from 14.8 to 2.5 percent if applying the performance criteria using the reliability index.

A Study on the Evaluation Criteria of Drainage Performance by Measurement of Horizontal Drainage Flow Rate by Damage Degree by Interior Model Construction Experiment (실내 모형토조실험에 의한 손상도별 수평배수공 유출량 측정을 통한 배수성능 평가 기준 제안)

  • Suhwan Choi;Donghyuk Lee;Jeonghoon Shim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2023
  • In order to prevent slope disasters caused by rainfall, it is very important to quickly exclude rainfall. In Korea, horizontal drainage holes with excellent economic feasibility and construction performance are generally applied as a method to lower the underground water level. However, horizontal drainage holes constructed on the site are often uniformly constructed regardless of the presence or absence of other water or ground conditions, and it is often difficult to expect drainage performance of horizontal drainage holes due to poor maintenance. In this study, an artificial ground was created using model construction and horizontal drainage experiments were conducted to measure the amount of horizontal drainage drain in a certain amount of control area 0%, 25%, 50%, 75%, and an evaluation table (draft) that can quantitatively evaluate horizontal drainage based on measurements and design documents is proposed as basic data.