• Title/Summary/Keyword: 비탄성설계

Search Result 172, Processing Time 0.024 seconds

Study on the Performance of New Shear Resistance Connecting Structure of Precast Member (프리캐스트 부재의 새로운 전단저항 연결체의 성능에 관한 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Kim, Seong-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.147-154
    • /
    • 2008
  • The purpose of this study is to critically evaluate the structural performance of an innovative new shear resistance connecting structure of precast member. Joints such as shear resistance connecting structure require special attention when designing and constructing precast segmental structures. An experimental and analytical study was conducted to quantify performance measures and examine one aspect of detailing for developed shear resistance connecting structure. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A joint element is used to predict the inelastic behavior of the joints between segmental members. Future work by the authors will do a model test of precast segmental prestressed concrete bridge columns with this shear resistance connecting structure, and examined both the structural behavior and seismic performance.

A Study on the Structural Behavior and the Strength of Circular Hollow Steel(CHS) Section Columns (원형강관 기둥의 구조적인 거동 및 강도에 관한 연구)

  • Kang, Doo Won;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.505-514
    • /
    • 2009
  • This paper describes the structural behavior and the ultimate strengths of circular hollow steel (CHS) sections based on a series of compression tests. The ultimate strengths of CHS section columns are mainly dependent on both diameter-thickness ratio and column slenderness ratio. For the CHS sections with a high diameter-thickness ratio, an elastic or an inelastic local buckling may occur prior to the overall buckling, and it may decrease the column strength. Test sections were fabricated from SM400 steel plate of 2.8 mm and 3.2 mm in thickness and were tested to failure. The diameter-thickness ratios of the test sections ranged from 45 to 170 to investigate the effect of local buckling on the column strength. The compression tests indicated that the CHS sections of lower diameter-thickness ratio than the yield limit in the current design specifications showed an inelastic local buckling and a significant post-buckling strength in the local mode. Their ultimate stresses were larger than the nominal yield stress. It was known that the allowable stresses of the sections predicted by the Korean Highway Bridge Design Specifications (2005) were too conservative in comparison with test results. The Direct Strength Method which was newly developed was calibrated for application to the CHS sections by the experimental and numerical results. The Direct Strength Method proposed can predict properly the ultimate strength of CHS section columns whether a local buckling and an overall buckling occur nearly simultaneously or not.

크리프와 건조수축을 고려한 철근콘크리트 기둥과 동바리의 축력 재분배 해석법

  • 김선영;이태규;김진근;이수곤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.629-636
    • /
    • 2001
  • To apply the research results to the design and the construction of the high rise buildings, long-term behavior of reinforced concrete structure have been widely studied. However, shoring and reshoring at early ages have not been considered in the most of studies. The removal of forms and shores has been dealt with one construction sequence. i.e. the deformation occurred at the early age before the removal of shore has been neglected. In this paper, two-dimensional frame analysis program for long-term behavior of reinforced concrete was developed. In the developed program, construction sequence including the settlement and the removal of shores is considered to predict axial force variation due to forms ,shores, and time-dependent concrete stiffness. Analysis results show that the time-dependent axial force of shores is reduced, and the redistributed axial force of the interior column is greater than the value by elastic analysis and that of the exterior column is smaller. In order to demonstrate the validity of this program, the test frame was constructed in sequence of the placement of concrete, form removal, reshoring, shore removal, and the application of additional load. The proposed program predicts experimental results well.

Reversed Lateral Load Tests on RC Frames Retrofitted with BRB and FRP (좌굴방지가새와 FRP로 보강된 RC골조의 반복 횡하중 실험)

  • Lee, Han-Seon;Lee, Kyung-Bo;Hwang, Seong-Jun;Cho, Chang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.683-692
    • /
    • 2011
  • In piloti-type low-rise RC residential buildings, severe damages have been usually concentrated at piloti stories under the earthquake. In this study, a piloti story was retrofitted by installation of buckling-restrained braces (BRB's) to increase strength and stiffness of piloti story and by application of fiber reinforced polymer (FRP) sheet on columns to avoid the brittle shear and axial failure of columns. To verify this retrofit performance, reversed cyclic lateral load tests were performed on 1:5 scale bare and retrofitted frames. The test results showed that yield strength (43.2 kN) appeared to be significantly larger than design value (30 kN) due to the increase of strength in the compression side, but the stiffness value (11.6 kN/mm) turned out to be approximately one-half of the design value (24.2 kN/mm). The reasons for this difference in stiffness were due to slippage at joint between the frame and the BRB's, displacement and rotation at footing. The energy absorption capacity of the retrofitted frame was 7.5 times larger than that of the bare frame. The change of the number of load cells under the footing from 2 to 1 reduced lateral stiffness from 11.6 kN/mm to 6 kN/mm, which was only three times larger than that of the bare frame (2.1 kN/mm).

Cyclic Local Buckling Behavior of Steel Members with Web Opening (유공 강구조 부재의 반복 국부좌굴거동)

  • Lee, EunTaik;Ko, KaYeon;Kang, JaeHoon;Chang, KyoungHo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.423-433
    • /
    • 2003
  • Many study have been performed to describe the elastic and inelastic behavior of H-shaped beams with web openings that generally concentrated on the monotonic loading condition and concentric web opening. The findings of the studies led Darwin to propose formulas for the design of beams with web openings considering local buckling. While the formulas are simple and useful in real situation, more studies arc needed on their cyclic loading condition. In this experimental study, 12 H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria based on the formulas proposed by Darwin were examined. The suitability of existing design formulas and the effects of plastic hinges on beams with web openings and of local buckling around web openings on the beam strength under cyclic loading were also studied. This was done by observing their behavior with various dimensional openings, eccentric per cent, and stiffeners.

Calculations of Flat Plate Deflections Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 처짐 산정)

  • Kim, Jae-Yo;Im, Ju-Hyeuk;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.797-804
    • /
    • 2009
  • The structural designs of RC flat plates that have insufficient flexural stiffness due to lack of support from boundary beams may be governed by serviceability as well as a strength criteira. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections considering construction sequences and concrete cracking effects is proposed. The construction steps and the construction loads are defined by the simplified method, and then the slab moments, elastic deflections, and the effective moment of inertia are calculated in each construction step. The elastic deflections in column and middle strips are magnified to inelastic deflections by the effective moment of inertia, and the center deflection of slab are calculated by the crossing beam method. The proposed method is verified by comparisons with the existing test result and the nonlinear analysis result. Also, by applications of the proposed method, the effects of the slab construction cycle and the number of shored floors on the deflections of flat plates under construction are analyzed.

Economic Analysis of a 5-Story RC OMRF Retrofitted with Modified Epoxy Mortar for Improving Seismic Performance (변성에폭시 모르터로 내진보강한 5층 철근콘크리트 보통모멘트골조의 경제성 분석)

  • Kang, Suk-Bong;Kwak, Jongman;Shin, Dongwoo;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.207-215
    • /
    • 2014
  • As a reinforcement material for RC members, the modified epoxy mortar has been reported one of the superior materials since the material can improve the load capacity and the seismic performance of the RC members. However, there were few experimental studies and analytical research for improving seismic performance with the material. This study is to propose an effective reinforcement plan for RC Ordinary Moment Resisting Frame (OMRF) with the evaluation of seismic performance and economic analysis. For the objective, first, the load-deflection curve of a simple beam specimen was compared with the analytical results. Second, a 5-story RC OMRF structure was designed only for gravity load and the alternatives for seismic reinforcement were suggested. Third, pushover analysis was executed for evaluation of design coefficients and seismic performance of the structures. Finally, an effective reinforcement plan was suggested based on the results of quantity take-off and economic analysis. The findings of this study can be utilized as the basic data when the modified epoxy mortar is applied to practice for improving the seismic performance of RC members.

Behavioral Characteristics and Energy Dissipation Capacity of Short Coupling Beams with Various Reinforcement Layouts (다양한 배근상세를 갖는 짧은 연결보의 주기거동 특성과 에너지소산능력의 평가)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.203-212
    • /
    • 2008
  • The cyclic behavior and energy dissipation mechanism of short coupling beams with various reinforcement layouts were studied. For numerical analysis of coupling beams, nonlinear truss model was used. The results of numerical analysis showed that the coupling beams with conventional reinforcement layout showed pinched cyclic behavior without significant energy dissipation, whereas the coupling beams with diagonal reinforcement exhibited stable cyclic behavior without pinching. The energy dissipation of the coupling beams was developed mainly by diagonal reinforcing bars developing large plastic strains rather than concrete which is a brittle material Based on this result, simplified equations for evaluating the energy dissipation of coupling beams were developed. For verification, the predicted energy dissipation was compared with the test results. The results showed that the simplified equations can predict the energy dissipation of short coupling beams with shear span-to-depth ratio less than 1.25 with reasonable precision, addressing various design parameters such as reinforcement layout, shear span-to-depth ratio, and the magnitude of inelastic displacement. The proposed energy equations can be easily applied to performance-based seismic evaluation and design of reinforced concrete structures and members.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험)

  • Kim, Nam-Sik;Lee, Ji-Ho;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.35-43
    • /
    • 2004
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. In this study, compressive strength tests are conducted to analyze the equivalent modulus ratio of micro-concrete to normal-concrete. Then, equivalent modulus ratios are divided into multi-phase damage levels, which are basically dependent on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent multi-phase similitude law based on seismic damage levels, is developed. Test specimens, consisted of prototype structures and 1/5 scaled models as a reinforced concrete column, were designed and fabricated based on the equivalent modulus ratios already defined. Finally quasistatic and pseudodynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. It is confirmed that the equivalent multi-phase similitude law proposed in this study could be suitable for seismic performance tests on small-scale models.

Seismic Fragility Analysis of RC Bridge Piers in Terms of Seismic Ductility (철근콘크리트 교각의 연성 능력에 따른 지진취약도)

  • Chung, Young-Soo;Park, Chang-Young;Park, Ji-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.91-102
    • /
    • 2007
  • Through lessons in recent earthquakes, the bridge engineering community recognizes the need for new seismic design methodologies based on the inelastic structural performance of RC bridge structures. This study represents results of performance-based fragility analysis of reinforced concrete (RC) bridge. Monte carlo simulation is performed to study nonlinear dynamic responses of RC bridge. Two-parameter log-normal distribution function is used to represent the fragility curves. These two-parameters, referred to as fragility parameters, are estimated by the traditional maximum likelihood procedure, which is treated each event of RC bridge pier damage as a realization of Bernoulli experiment. In order to formulate the fragility curves, five different damage states are described by two practical factors: the displacement and curvature ductility, which are mostly influencing on the seismic behavior of RC bridge piers. Five damage states are quantitatively assessed in terms of these seismic ductilities on the basis of numerous experimental results of RC bridge piers. Thereby, the performance-based fragility curves of RC bridge pier are provided in this paper. This approach can be used in constructing the fragility curves of various bridge structures and be applied to construct the seismic hazard map.