• Title/Summary/Keyword: 비축시설

Search Result 33, Processing Time 0.014 seconds

A Study on the Operation Plan of the Gangwon-do Disaster Management Resources Integrated Management Center (강원도 재난관리자원 통합관리센터 운영방안에 관한 연구)

  • Hang-Il Jo;Sang-Beom Park;Kye-Won Jun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • In Korea, as disasters become larger and more complex, there is a trend of shifting from a focus on response and recovery to a focus on prevention and preparedness. In order to prevent and prepare for disasters, each local government manages disaster management resources by stockpiling them. However, although disaster management resources are stored in individual warehouses, they are managed by department rather than by warehouse, resulting in insufficient management of disaster management resources due to the heavy workload of those in charge. In order to intensively manage these disaster management resources, an integrated disaster management resource management center is established and managed at the metropolitan/provincial level. In the case of Gangwon-do, the subject of this study, a warehouse is rented and operated as an integrated disaster management resource management center. When leasing an integrated management center, there is the inconvenience of having to move the location every 1 to 2 years, so it is deemed necessary to build a dedicated facility in an available site. To select a location candidate, network analysis was used to measure access to and use of facilities along interconnected routes of networks such as roads and railways. During network analysis, the Location-Allocation method, which was widely used in the past to determine the location of multiple facilities, was applied. As a result, Hoengseong-gun in Gangwon-do was identified as a suitable candidate site. In addition, if the integrated management center uses our country's logistics system to stockpile disaster management resources, local governments can mobilize disaster management resources in 3 days, and it is said that it takes 3 days to return to normal life after a disaster occurs. Each city's disaster management resource stockpile is 3 days' worth per week, and the integrated management center stores 3 times the maximum of the city's 4-day stockpile.

Analysis of the Pathways and Travel Times for Groundwater in Volcanic Rock Using 3D Fracture Network (화산암질 암반에서 3차원 균열망 모델을 이용한 지하수 유동경로 및 유동시간 해석)

  • 박병윤;김경수;김천수;배대석;이희근
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.42-58
    • /
    • 2001
  • In order to protect the environment from waste disposal activities, the prediction of the flux and flow paths of the contaminants from underground facilities should be assessed as accurately as possible. Especially, the prediction of the pathways and travel times of the nuclides from high level radioactive wastes in a deep repository to biosphere is one of the primary tasks for assessing the ultimate safety and performance of the repository. Since the contaminants are mainly transported with groundwater along the discontinuities developed within rock mass, the characteristics of groundwater flow through discontinuities is important for the prediction of contaminant fates as well as safety assessment of a repository. In this study, the actual fracture network could be effectively generated based on in situ data by separating geometric parameter and hydraulic parameter. The calculated anisotropic hydraulic conductivity was applied to a 3D porous medium model to calculate the path flow and travel time of the large studied area with the consideration of the complex topology in the area. Using the model, the pathways and travel times for groundwater were analyzed. From this study, it was concluded that the suggested techniques and procedures for predicting the pathways and travel times of groundwater from underground facilities to biosphere is acceptable and those can be applied to the safety assessment of a repository for radioactive wastes.

  • PDF

The Study on the Fire Monitoring Dystem for Full-scale Surveillance and Video Tracking (전방위 감시와 영상추적이 가능한 화재감시시스템에 관한 연구)

  • Baek, Dong-hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.40-45
    • /
    • 2018
  • The omnidirectional surveillance camera uses the object detection algorithm to level the object by unit so that broadband surveillance can be performed using a fisheye lens and then, it was a field experiment with a system composed of an omnidirectional surveillance camera and a tracking (PTZ) camera. The omnidirectional surveillance camera accurately detects the moving object, displays the squarely, and tracks it in close cooperation with the tracking camera. In the field test of flame detection and temperature of the sensing camera, when the flame is detected during the auto scan, the detection camera stops and the temperature is displayed by moving the corresponding spot part to the central part of the screen. It is also possible to measure the distance of the flame from the distance of 1.5 km, which exceeds the standard of calorific value of 1 km 2,340 kcal. In the performance test of detecting the flame along the distance, it is possible to be 1.5 km in width exceeding $56cm{\times}90cm$ at a distance of 1km, and so it is also adaptable to forest fire. The system is expected to be very useful for safety such as prevention of intrinsic or surrounding fire and intrusion monitoring if it is installed in a petroleum gas storage facility or a storing place for oil in the future.