• 제목/요약/키워드: 비조질강

검색결과 17건 처리시간 0.024초

고장력볼트 냉간압조용 비조질강 특성에 관한 연구 (Mechanical properties and workability of micro-alloyed steel on cold forming of high tension bolt)

  • 이영선;최정묵;황범규;정택우;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.132-136
    • /
    • 2009
  • The importance and interests for saving of energy and cost in industry has been steadily grown up. Therefore, process optimization to reduce the processing step and energy is one of the most important things. The micro-alloyed steel of which post-heat-treatment is not necessary, has attractive points for high strength materials. However, for the application of non-heat-treated steel to structural parts, it is necessary to confirm the reliability of mechanical properties. In order to estimate mechanical properties. The microstructure, hardness, tensile strength, compressive strength and tensile fatigue strength of micro-alloyed steel having 900MPa tensile strength has been investigated.

  • PDF

고인성 비조질강 샤시부품 개발 (Development of Chassis Parts Using High Toughness Micro-alloyed Steel)

  • 이시엽;김혁
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.1-6
    • /
    • 2012
  • This paper developed the chassis part as micro-alloyed steel with high toughness. The performance of micro-alloy steels are superior to similar heat treated steels. The strengthening effects of vanadium make micro-alloyed steels particularly suited for high-strength-steel applications. The disadvantages are that ductility and toughness are not as good as quenched and tempered (Q&T) steels. Precipitation hardening increases strength but may contribute to brittleness. Toughness can be improved by reducing carbon content and titanium additions. dispersed titanium nitrides (TiN) formed by titanium additions effectively prevents grain coarsening. Grain refinement increases strength but also improves toughness. For the chassis parts using high toughness micro-alloy steel, it had proven superior to a plain steel forging by static strength test and endurance test.

비조질강 온간단조를 위한 공정검토 (Study of Warm Forging Process for Non-Heat-Treated Steel)

  • 박종수;강정대;이영선;이정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.525-530
    • /
    • 2001
  • As a part of efforts to examine feasibility of warm forging near-net-shape process for non-heat-treated steel to replace quenched and tempered S45C steel, the optimized process condition has been determined to be $820^{\circ}C$ for heating, 10/sec for strain rate of forging and approximately 250MPa for flow stress from observed results such as the $A_{3}$ transformation temperature of about $790^{\circ}C$, the fully dynamic recrystallized behavior between $800^{\circ}C\;and\;850^{\circ}C$ when compressed up to 63% engineering strain at 10/sec strain rate, and the high temperature microsturctural stability. Also, controlled cooling rate of $6.3^{\circ}C/sec$ by water-spraying at a rate of $0.10cc/sec-cm^{2}$ for 60seconds followed by air-cooling right after forging process has been considered in this study as a feasible approach based on examination of the microsturcture of mixed ${\alpha}-ferrite$ and pearlite, the hardness and tensile properties meeting specification, and the reduced total cooling time to room temperature. Successive works would be carried out for the impact strength, machinalility, and forgeability at this process in the near future.

  • PDF

자동차 엔진 캡 소재의 절삭 특성에 관한 연구 (A Study on the Machining Characteristics of Engine Cap Meterials for a Automobile)

  • 채왕석;김동현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.185-188
    • /
    • 1995
  • In this paper, We have analyzed dynamic characteristics of cutting force. Test materials are used in the tempered carbon steek and non-tempered carbon steel. The obtained results ase as follows: 1. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed make a change. 2. Specific cutting force is smaller non-tempered carbon steel than tempered caron steel when cutting depth make a change

  • PDF

비조질강 크랭크 축 개발 (The development of micro alloyed steel crankshaft)

  • 김양수;현태욱;하종배
    • 오토저널
    • /
    • 제15권4호
    • /
    • pp.14-20
    • /
    • 1993
  • 비조질강은 1970년대 초반 독일에서 개발된 이래 열처리(Quenching & Tempering)가 필요없는 에너지절약형 강재로서 유럽과 일본의 자동차업계를 중심으로 그 적용량이 지속적으로 증가되고 있다. 열간단조용 비조질강의 물성은 가열온도, 단조온도 및 냉각속도 등 단조공정변수의 영향을 크게 받는다. 본 고에서는 승용차엔진용 크랭크축에의 적용을 위해 SM50C에 V을 0.15% 첨가한 비조질강의 가열온도와 냉각속도에 따른 기계적 성질과 미세조직의 변화를 파악하여 최적단조공정을 정립하고, 크랭크 축시제품을 제작하여 그물성과 내구강도를 평가하고자 한다.

  • PDF

자동차 차축 소재의 금속적 특징 및 밀링 절삭 특성 연구 (A Study on the Metrial Charcterisitics of Material Quality and Milling of Axle Materials for a Automobile)

  • 채왕석
    • 한국생산제조학회지
    • /
    • 제6권1호
    • /
    • pp.77-83
    • /
    • 1997
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value, hardness etc. Test materials are used in the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1. In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite + pearlite structure. 2. Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth on cut is constant. 4. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when cutting speed and depth of cut is constant.

  • PDF

CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계 (Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE)

  • 이형욱;윤덕재;이근안;최석우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

냉간단조용 비조질강 및 성형품의 미세조직과 기계적 특성분석 (Characterization of Microstructure and Mechanical Properties of Micro-alloyed Cold Forging Steel and Product)

  • 서동우;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.409-412
    • /
    • 2004
  • Microstructures and mechanical properties of microalloyed cold forging steel and cold forged prototype automobile part are characterized. The work hardening according to the increase of plastic strain plays a major role in increasing the tensile strength of microalloyed cold forging steel during cold forming. On the other hand, inhomogeneous distribution of plastic strain causes variations in microstructure and mechanical properties. The relation between inhomogeneous distribution of plastic strain and variations in microstructure and mechanical properties is discussed. The variation of mechanical property in cold forged automobile part is analyzed using quantitative evaluation of plastic strain from finite element method.

  • PDF