최근 사물인터넷의 발전으로 사용자 주변 상황을 인지하여 맞춤형 서비스를 제공하는 상황인지 시스템에 대한 관심이 증가되고 있다. 기존의 상황인지 시스템은 사용자 주위에서 생성되는 데이터를 분석하여 사용자 주변 상황을 표현하는 상황 정보로 추상화하는 기술이 사용되었다. 하지만 증가하는 사용자의 서비스 요구 사항에 따라 다양한 종류의 비정형 데이터의 사용이 증가하고, 사용자 주변에서 수집되는 데이터의 양이 많아지면서 비정형 데이터의 처리와 상황인지 서비스의 제공에 어려움이 있다. 이러한 사항은 딥러닝 응용에서 비정형 구조의 입력 데이터가 많이 사용되는 데서 찾아볼 수 있다. 기존 연구에서는 에지 컴퓨팅 환경에서 다양한 딥러닝 모델을 활용해 비정형 데이터를 상황 정보로 추상화하는 연구가 진행되었으나, 수집-전처리-분석 등과 같은 추상화 과정 간의 종속성으로 인해 제한된 종류의 딥러닝 모델만이 적용 가능하기 때문에 시스템의 기능적 확장성이 고려되어야 한다. 이에 본 논문은 에지 컴퓨팅 환경에서 딥러닝 기술을 활용한 비정형 데이터 추상화 과정의 기능적 확장성을 고려한 비정형 데이터 추상화 방법을 제안한다. 제안하는 방법은 데이터 처리가 분산되어 있는 에지 컴퓨팅 환경에서 수집과 전처리 과정을 수행할 수 있는 팻 클라이언트 기술을 사용하여 추상화 과정의 수집-전처리 과정과 분석 과정을 분리하여 수행하는 것이다. 또한 분리된 추상화 과정을 관리하기 위해 수집-전처리 과정을 수행하는 데 필요한 정보를 팻 클라이언트 프로파일로 제공하고, 분석 과정에 필요한 정보를 분석 모델 설명 언어(AMDL) 프로파일로 제공한다. 두 가지 프로파일을 통해서 추상화 과정을 독립적으로 관리하여 상황인지 시스템의 기능적 확장성을 제공한다. 실험에서는 차량 출입 통제 알림 서비스를 위한 차량 이미지 인식 모델을 대상으로 팻 클라이언트 프로파일과 AMDL 프로파일의 예제를 통해 시스템의 기능적 확장성을 보이고, 비정형 데이터의 추상화 과정별 세부사항을 보인다.
공사감리문서는 프로젝트의 수행과정을 제3의 독립적인 위치에서 모니터링한 종합적인 점검의견이라는 주요한 비정형 정보를 제공할 수 있다. 이와 같은 비정형 정보는 최근 분석방법론의 고도화에 따라 다양한 시사점을 제공할 수 있는 유의미한 자료로 평가받고 있다. 이에 본 연구는 건축공사의 최종 감리보고서 내 비정형 데이터를 대상으로 다양한 방법론을 활용하여 비용성과를 평가할 수 있는 프레임워크를 제시하였다. 세부적으로는 텍스트마이닝과 사회연결망분석을 통해 감리보고서 내 주요 키워드들을 도출하고, 해당 데이터들을 이항 로지스틱 회귀분석을 통해 분석하여 비용성과를 평가하였다. 그 결과, 감리보고서 내 비정형 데이터를 이용하여 추정된 비용성과 예측 정확도는 약 73% 수준으로 높게 도출되었다. 본 연구의 결과는 향후 건설산업에서 발생되는 다양한 비정형 데이터의 분석을 위한 기초자료로 활용이 가능할 것으로 예상된다.
최근 디지털 정보들은 각종 매체에 저장되어 다양하게 활용되고 있다. 그 중 범죄관련 비정형데이터의 분석과 활용은 범죄수사에 유용한 자료로 활용될 수 있다. 그러나 기존의 범죄통계 자료의 분석 및 활용은 정형데이터를 이용한 제한적 접근에 그치고 있다. 따라서, 본 논문은 수사 자료 중 처리되지 못한 비정형데이터를 분석, 저장, 처리하여, 수사 자료로 활용할 수 있도록 정형데이터화 함으로 범죄 프로파일링에 도움이 될 것으로 기대된다.
오늘날, 다양한 분야에서 다양한 형태의 빅 데이터들이 축적되고 있다. 이에, 빅 데이터를 분석하고 그 속에서 가치 있는 정보를 찾아내는 것은 매우 중요해지고 있다. 또한, 비정형 빅 데이터를 정형화하여 통계적 기법을 적용할 수 있게 하는 것은 매우 중요해지고 있다. 본 연구에서는 분산처리 시스템인 맵리듀스를 활용하여 비정형 빅 데이터를 정형화하고, 통계적 분석 기법인 단순 대응분석과 다중 대응분석을 적용하여, 한국 경제 신문의 지면에 실린 기사를 이용해 삼성전자와 애플을 언급하고 있는 단어들의 관계와 특성을 각각 파악하였다.
본 논문에서는 드라마의 시청률에 영향을 미치는 연관어 분석을 위해 정형화된 데이터와 비정형화된 데이터를 분석하는 내용이다. 정형화된 데이터 수집은 각 방송사의 드라마정보, 인물정보, 방송정보, 시청률정보라는 4가지 영역에서 총 19가지항목을 수집하였다. 비정형데이터는 각 방송사에서 드라마별로 운영되고 있는 게시판과 방영전 블로그와 방영후 블로그로부터 크롤링기법을 이용하여 수집하였다. 수집된 정형데이터로부터 각 방송사별 4가지 영역별에 따른 차이를 비교한 결과 방송사별 서로 유사한 결과 값을 보이고 있었다. 그리고 각 방송사의 드라마별 게시판과 블로그에서 수집된 비정형데이터로부터 출현빈도의 상관관계 분석을 통해 관련 연관어를 7개 도출하였다. 도출된 연관어는 신뢰성 분석을 통해 이루어졌다.
본 논문에서는 드라마의 시청률에 영향을 미치는 요소가 무엇인지를 파악하기 위해 정형화된 데이터와 비정형화된 데이터를 분석하기 위한 내용이다. 정형화된 데이터 수집은 각 방송사의 드라마 정보, 인물정보, 방송정보, 시청률정보라는 4가지 영역에서 총 19가지항목을 수집하였다. 비정형데이터를 수집하기 위해 각 방송사에서 드라마별로 운영되고 있는 게시판과 방영전블로그와 방영후블로그로부터 크롤링기법을 이용하여 수집하였다. 수집된 데이터로부터 방송사별 드라마 방영시간대, 방영시작시기, 장르, 방영요일에 따른 차이를 비교한 결과 방송사별 서로 유사한 것으로 나타났다.
급속한 비대면 환경과 모바일 우선 전략에 따라 해마다 많은 정형/비정형 데이터의 폭발적인 증가와 생성은 모든 분야에서 빅데이터를 활용한 새로운 의사 결정과 서비스를 요구하고 있다. 그러나 매년 급속히 증가하는 빅데이터를 활용하여 실무 환경에서 적용 가능한 표준 플랫폼으로 빅데이터를 수집하여 적재한 후, 정재한 빅데이터를 관계형 데이터베이스에 저장하고 처리하는 하둡 에코시스템 활용의 참조 사례들은 거의 없었다. 따라서 본 연구에서는 스프링 프레임워크 환경에서 3대의 가상 머신 서버를 통하여 하둡 2.0을 기반으로 쇼셜 네트워크 서비스에서 키워드로 검색한 비정형 데이터를 수집한 후, 수집된 비정형 데이터를 하둡 분산 파일 시스템과 HBase에 적재하고, 적재된 비정형 데이터를 기반으로 형태소 분석기를 이용하여 정형화된 빅데이터를 관계형 데이터베이스에 저장할 수 있게 설계하고 구현하였다. 향후에는 데이터 심화 분석을 위한 하이브나 머하웃을 이용하여 머신 러닝을 이용한 클러스터링과 분류 및 분석 작업 연구가 지속되어야 할 것이다.
최근 데이터의 양이 급격하게 증가하면서 빅데이터의 시대가 도래했다. 빅데이터는 형식이 없는 비정형 데이터이므로 기존의 정형 데이터 처리 방법으로는 분석 및 데이터 처리가 불가능해졌다. 또한, 범죄예방에 대한 관심이 증가하면서, 범죄 데이터 분석의 수요가 증가하고 있다. 본 연구에서는 비정형 범죄 데이터를 분석, 예측 등의 전산처리를 하기 위한 정규화 메트릭을 설정하는 방안을 제안하고자 한다.
금융 시계열 분석은 현대 사회의 경제적, 사회적으로 매우 중요한 역할을 하며 세계 발전에 영향을 미치는 중요한 과제지만 많은 잡음(noise)과 불확실성 등의 어려움으로 인해 금융 시계열 분석 예측은 어려운 연구 주제이다. 본 논문에서는 비정형 데이터와 정형 데이터를 함께 이미지로 변환하여 시장을 예측 하는 방법(MPIL)을 제안한다. 시장 예측을 위해 n일 기간의 비정형 데이터인 SNS, 뉴스 데이터를 감정분석하고 정형 데이터인 시장 데이터를 GADF 알고리즘으로 이미지 변환하고 이미지 학습을 통해 n+1일의 가격을 예측하는 초단기 시장을 예측한다. MPIL은 평균 정확도 56%로 기존 시장예측에 사용되던 감정분석을 활용하여 LSTM으로 시장을 예측하는 모델 평균 정확도 50%보다 높은 정확도를 보였다.
최근 정보통신기술이 하루가 다르게 발전함에 따라 하루에도 수많은 데이터가 흘러나오는 최근의 추세이다. 정형 데이터 뿐 아니라 비정형 데이터 분석까지 진행하는 최근의 추세에 맞춰 현 빅데이터 기술 동향을 분석한다. 빅데이터 시대를 맞아 기존의 데이터웨어하우스(DW)와 발전된 데이터웨어하우스(DW) 어플라이언스에 대해 분석하고 향후 발전 전망과 방향을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.