• 제목/요약/키워드: 비정형 데이터 분석

검색결과 405건 처리시간 0.032초

에지 컴퓨팅 환경에서의 상황인지 서비스를 위한 팻 클라이언트 기반 비정형 데이터 추상화 방법 (Fat Client-Based Abstraction Model of Unstructured Data for Context-Aware Service in Edge Computing Environment)

  • 김도형;문종혁;박유상;최종선;최재영
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권3호
    • /
    • pp.59-70
    • /
    • 2021
  • 최근 사물인터넷의 발전으로 사용자 주변 상황을 인지하여 맞춤형 서비스를 제공하는 상황인지 시스템에 대한 관심이 증가되고 있다. 기존의 상황인지 시스템은 사용자 주위에서 생성되는 데이터를 분석하여 사용자 주변 상황을 표현하는 상황 정보로 추상화하는 기술이 사용되었다. 하지만 증가하는 사용자의 서비스 요구 사항에 따라 다양한 종류의 비정형 데이터의 사용이 증가하고, 사용자 주변에서 수집되는 데이터의 양이 많아지면서 비정형 데이터의 처리와 상황인지 서비스의 제공에 어려움이 있다. 이러한 사항은 딥러닝 응용에서 비정형 구조의 입력 데이터가 많이 사용되는 데서 찾아볼 수 있다. 기존 연구에서는 에지 컴퓨팅 환경에서 다양한 딥러닝 모델을 활용해 비정형 데이터를 상황 정보로 추상화하는 연구가 진행되었으나, 수집-전처리-분석 등과 같은 추상화 과정 간의 종속성으로 인해 제한된 종류의 딥러닝 모델만이 적용 가능하기 때문에 시스템의 기능적 확장성이 고려되어야 한다. 이에 본 논문은 에지 컴퓨팅 환경에서 딥러닝 기술을 활용한 비정형 데이터 추상화 과정의 기능적 확장성을 고려한 비정형 데이터 추상화 방법을 제안한다. 제안하는 방법은 데이터 처리가 분산되어 있는 에지 컴퓨팅 환경에서 수집과 전처리 과정을 수행할 수 있는 팻 클라이언트 기술을 사용하여 추상화 과정의 수집-전처리 과정과 분석 과정을 분리하여 수행하는 것이다. 또한 분리된 추상화 과정을 관리하기 위해 수집-전처리 과정을 수행하는 데 필요한 정보를 팻 클라이언트 프로파일로 제공하고, 분석 과정에 필요한 정보를 분석 모델 설명 언어(AMDL) 프로파일로 제공한다. 두 가지 프로파일을 통해서 추상화 과정을 독립적으로 관리하여 상황인지 시스템의 기능적 확장성을 제공한다. 실험에서는 차량 출입 통제 알림 서비스를 위한 차량 이미지 인식 모델을 대상으로 팻 클라이언트 프로파일과 AMDL 프로파일의 예제를 통해 시스템의 기능적 확장성을 보이고, 비정형 데이터의 추상화 과정별 세부사항을 보인다.

비정형 공사감리문서 정보와 이항 로지스틱 회귀분석을 이용한 건축 현장 비용성과 평가 프레임워크 개발 (Cost Performance Evaluation Framework through Analysis of Unstructured Construction Supervision Documents using Binomial Logistic Regression)

  • 김창원;송태근;이기석;유위성
    • 한국건축시공학회지
    • /
    • 제24권1호
    • /
    • pp.121-131
    • /
    • 2024
  • 공사감리문서는 프로젝트의 수행과정을 제3의 독립적인 위치에서 모니터링한 종합적인 점검의견이라는 주요한 비정형 정보를 제공할 수 있다. 이와 같은 비정형 정보는 최근 분석방법론의 고도화에 따라 다양한 시사점을 제공할 수 있는 유의미한 자료로 평가받고 있다. 이에 본 연구는 건축공사의 최종 감리보고서 내 비정형 데이터를 대상으로 다양한 방법론을 활용하여 비용성과를 평가할 수 있는 프레임워크를 제시하였다. 세부적으로는 텍스트마이닝과 사회연결망분석을 통해 감리보고서 내 주요 키워드들을 도출하고, 해당 데이터들을 이항 로지스틱 회귀분석을 통해 분석하여 비용성과를 평가하였다. 그 결과, 감리보고서 내 비정형 데이터를 이용하여 추정된 비용성과 예측 정확도는 약 73% 수준으로 높게 도출되었다. 본 연구의 결과는 향후 건설산업에서 발생되는 다양한 비정형 데이터의 분석을 위한 기초자료로 활용이 가능할 것으로 예상된다.

비정형 데이터의 계층적 군집화를 이용한 범죄 프로파일링 (Criminal Profiling Using Hierarchical Clustering of Unstructured Data)

  • 김용훈;정목동
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.335-338
    • /
    • 2016
  • 최근 디지털 정보들은 각종 매체에 저장되어 다양하게 활용되고 있다. 그 중 범죄관련 비정형데이터의 분석과 활용은 범죄수사에 유용한 자료로 활용될 수 있다. 그러나 기존의 범죄통계 자료의 분석 및 활용은 정형데이터를 이용한 제한적 접근에 그치고 있다. 따라서, 본 논문은 수사 자료 중 처리되지 못한 비정형데이터를 분석, 저장, 처리하여, 수사 자료로 활용할 수 있도록 정형데이터화 함으로 범죄 프로파일링에 도움이 될 것으로 기대된다.

맵리듀스와 대응분석을 활용한 비정형 빅 데이터의 정형화와 시각적 해석 (Standardizing Unstructured Big Data and Visual Interpretation using MapReduce and Correspondence Analysis)

  • 최요셉;최용석
    • 응용통계연구
    • /
    • 제27권2호
    • /
    • pp.169-183
    • /
    • 2014
  • 오늘날, 다양한 분야에서 다양한 형태의 빅 데이터들이 축적되고 있다. 이에, 빅 데이터를 분석하고 그 속에서 가치 있는 정보를 찾아내는 것은 매우 중요해지고 있다. 또한, 비정형 빅 데이터를 정형화하여 통계적 기법을 적용할 수 있게 하는 것은 매우 중요해지고 있다. 본 연구에서는 분산처리 시스템인 맵리듀스를 활용하여 비정형 빅 데이터를 정형화하고, 통계적 분석 기법인 단순 대응분석과 다중 대응분석을 적용하여, 한국 경제 신문의 지면에 실린 기사를 이용해 삼성전자와 애플을 언급하고 있는 단어들의 관계와 특성을 각각 파악하였다.

비정형데이터 수집을 통한 드라마 시청률 연관어 분석 (Analysis of drama viewership related words through unstructured data collection)

  • 강선경;이현창;신성윤
    • 한국정보통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.1567-1574
    • /
    • 2017
  • 본 논문에서는 드라마의 시청률에 영향을 미치는 연관어 분석을 위해 정형화된 데이터와 비정형화된 데이터를 분석하는 내용이다. 정형화된 데이터 수집은 각 방송사의 드라마정보, 인물정보, 방송정보, 시청률정보라는 4가지 영역에서 총 19가지항목을 수집하였다. 비정형데이터는 각 방송사에서 드라마별로 운영되고 있는 게시판과 방영전 블로그와 방영후 블로그로부터 크롤링기법을 이용하여 수집하였다. 수집된 정형데이터로부터 각 방송사별 4가지 영역별에 따른 차이를 비교한 결과 방송사별 서로 유사한 결과 값을 보이고 있었다. 그리고 각 방송사의 드라마별 게시판과 블로그에서 수집된 비정형데이터로부터 출현빈도의 상관관계 분석을 통해 관련 연관어를 7개 도출하였다. 도출된 연관어는 신뢰성 분석을 통해 이루어졌다.

SNS 비정형데이터 크롤링을 통한 드라마 시청률의 연관어 분석 (Analysis of related words of drama viewership through SNS unstructured data crawling)

  • 강선경;이현창;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.169-170
    • /
    • 2017
  • 본 논문에서는 드라마의 시청률에 영향을 미치는 요소가 무엇인지를 파악하기 위해 정형화된 데이터와 비정형화된 데이터를 분석하기 위한 내용이다. 정형화된 데이터 수집은 각 방송사의 드라마 정보, 인물정보, 방송정보, 시청률정보라는 4가지 영역에서 총 19가지항목을 수집하였다. 비정형데이터를 수집하기 위해 각 방송사에서 드라마별로 운영되고 있는 게시판과 방영전블로그와 방영후블로그로부터 크롤링기법을 이용하여 수집하였다. 수집된 데이터로부터 방송사별 드라마 방영시간대, 방영시작시기, 장르, 방영요일에 따른 차이를 비교한 결과 방송사별 서로 유사한 것으로 나타났다.

  • PDF

빅데이터 수집 처리를 위한 분산 하둡 풀스택 플랫폼의 설계 (Design of Distributed Hadoop Full Stack Platform for Big Data Collection and Processing)

  • 이명호
    • 한국융합학회논문지
    • /
    • 제12권7호
    • /
    • pp.45-51
    • /
    • 2021
  • 급속한 비대면 환경과 모바일 우선 전략에 따라 해마다 많은 정형/비정형 데이터의 폭발적인 증가와 생성은 모든 분야에서 빅데이터를 활용한 새로운 의사 결정과 서비스를 요구하고 있다. 그러나 매년 급속히 증가하는 빅데이터를 활용하여 실무 환경에서 적용 가능한 표준 플랫폼으로 빅데이터를 수집하여 적재한 후, 정재한 빅데이터를 관계형 데이터베이스에 저장하고 처리하는 하둡 에코시스템 활용의 참조 사례들은 거의 없었다. 따라서 본 연구에서는 스프링 프레임워크 환경에서 3대의 가상 머신 서버를 통하여 하둡 2.0을 기반으로 쇼셜 네트워크 서비스에서 키워드로 검색한 비정형 데이터를 수집한 후, 수집된 비정형 데이터를 하둡 분산 파일 시스템과 HBase에 적재하고, 적재된 비정형 데이터를 기반으로 형태소 분석기를 이용하여 정형화된 빅데이터를 관계형 데이터베이스에 저장할 수 있게 설계하고 구현하였다. 향후에는 데이터 심화 분석을 위한 하이브나 머하웃을 이용하여 머신 러닝을 이용한 클러스터링과 분류 및 분석 작업 연구가 지속되어야 할 것이다.

범죄 데이터의 전산처리를 위한 정규화 메트릭 설정 방안 (A Normalization Matrics for Computational Processing of Crime Dataset)

  • 임선영;박은영;박영호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.932-933
    • /
    • 2015
  • 최근 데이터의 양이 급격하게 증가하면서 빅데이터의 시대가 도래했다. 빅데이터는 형식이 없는 비정형 데이터이므로 기존의 정형 데이터 처리 방법으로는 분석 및 데이터 처리가 불가능해졌다. 또한, 범죄예방에 대한 관심이 증가하면서, 범죄 데이터 분석의 수요가 증가하고 있다. 본 연구에서는 비정형 범죄 데이터를 분석, 예측 등의 전산처리를 하기 위한 정규화 메트릭을 설정하는 방안을 제안하고자 한다.

비정형, 정형 데이터의 이미지 학습을 활용한 시장예측 (MPIL: Market prediction through image learning of unstructured and structured data)

  • 이윤선;이주홍;최범기;송재원
    • 스마트미디어저널
    • /
    • 제10권2호
    • /
    • pp.16-21
    • /
    • 2021
  • 금융 시계열 분석은 현대 사회의 경제적, 사회적으로 매우 중요한 역할을 하며 세계 발전에 영향을 미치는 중요한 과제지만 많은 잡음(noise)과 불확실성 등의 어려움으로 인해 금융 시계열 분석 예측은 어려운 연구 주제이다. 본 논문에서는 비정형 데이터와 정형 데이터를 함께 이미지로 변환하여 시장을 예측 하는 방법(MPIL)을 제안한다. 시장 예측을 위해 n일 기간의 비정형 데이터인 SNS, 뉴스 데이터를 감정분석하고 정형 데이터인 시장 데이터를 GADF 알고리즘으로 이미지 변환하고 이미지 학습을 통해 n+1일의 가격을 예측하는 초단기 시장을 예측한다. MPIL은 평균 정확도 56%로 기존 시장예측에 사용되던 감정분석을 활용하여 LSTM으로 시장을 예측하는 모델 평균 정확도 50%보다 높은 정확도를 보였다.

DW 어플라이언스를 통한 빅데이터 처리 기술 동향 분석 (Analysis of Trend for BigData Processing Technology by DW Appliance)

  • 최로환;박석천;심봉수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.904-907
    • /
    • 2013
  • 최근 정보통신기술이 하루가 다르게 발전함에 따라 하루에도 수많은 데이터가 흘러나오는 최근의 추세이다. 정형 데이터 뿐 아니라 비정형 데이터 분석까지 진행하는 최근의 추세에 맞춰 현 빅데이터 기술 동향을 분석한다. 빅데이터 시대를 맞아 기존의 데이터웨어하우스(DW)와 발전된 데이터웨어하우스(DW) 어플라이언스에 대해 분석하고 향후 발전 전망과 방향을 제시한다.