• Title/Summary/Keyword: 비정형 건물

Search Result 68, Processing Time 0.024 seconds

Construction Sequence Analysis for Checking Stability in Complex-Shaped High-Rise Building under Construction (비정형 초고층 건물의 시공 중 안정성 검토를 위한 시공단계해석)

  • Jang, Dong-Woon;Kang, Ji-Hun;Chea, Seung-Yun;Eom, Tae-Sung;Kim, Jae-Yo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.263-266
    • /
    • 2010
  • 비정형 형상의 초고층 건물이 증가함에 따라, 설계 시공 계획 단계에서의 시공 중 건물의 구조적 안정성 검토가 핵심 사항으로 부각되고 있다. 시공 중 비정형 초고층 건물의 안정성을 확보하기 위해서는, 횡력저항시스템이 완전히 형성되기 전 구조체 자중의 불균형 분포에 의해 발생하는 수직부재의 불균등 축소, 골조의 기울어짐 혹은 횡변위 등이 시공단계해석에 의하여 검토되어야 하며, 시공단계해석은 구조건전성모니터링, 시공 보정 프로그램, 시공계획 수립 등과 체계적으로 결합되어 진행되어야 한다. 이 논문은 시공 중 비정형 초고층 건물의 구조 안정성 검토를 위하여, 실제 비정형 초고층 프로젝트에 시공단계해석을 적용하였으며, 시공 중 초고층 건물의 안정성 확보를 위한 주요 검토 항목 및 방법을 제시하였다.

  • PDF

A Study on the Relationship between the Eccentricity and the Level of Damage in the Seismic Response of Buildings with Plan Irregularities (지진 하중을 받는 평면 비정형 건물의 편심과 손상도의 상관관계에 대한 연구)

  • Jeong, Seoung-Hoon;Lee, Kwang-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.49-57
    • /
    • 2010
  • Most previous research on the seismic response of structures with plan irregularities have focused on the relationship between the eccentricity and the amount of torsion. This approach cannot provide the direct relationship between the irregularity and the damage. Therefore, an investigation on the relationship between the eccentricities of buildings with plan irregularities and the damage index was performed. Inelastic dynamic time-history analyses were performed on one-story buildings with various eccentricities. For the damage assessment, a 3D damage index was adopted to reflect the effect of the bi-directional response and torsion. Based on the analysis results, buildings with eccentricities of 10%, 20% and 30% will suffer 3~5%, 13~18%, and 33~47% more damage than their regular counterparts, respectively.

Application of non-linear Seismic Isolators in Regular and Irregular Buildings (정형 및 비정형 건물에 대한 비선형 면진장치의 적용)

  • 김대곤;이동근;정재;남궁계홍
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2001
  • 면진기술은 주로 저층 구조물의 내진설계에서 적용되는 방법으로 건물과 기초사이에 면진장치를 설치하여 상부로 전달되는 지진하중을 효과적으로 감소시킨다. 그러나 이 방법은 중.고층 구조물에 그대로 적용하기에는 여러 가지 기술적 문제가 따르므로, 구보물의 중간층 일부를 분리시켜 상부로 전달되는 지진력을 감소시킬 수 있을 것이다. 본 노문에서는 저층 뿐만 아니라, 중.고층 정형구조물의 주상복합건물과 같은 비정형 구조물에 대하여 구조물의 중간층 일부를 비선형 면진장치로 면진시키고 그 효과를 분석하였다. 이러한 중간층 면진 구조물의 경우, 고정기초 구조물에 비하여 적은 층간변위나 층전단력이 발생하였으며, 특히 주상복합건물에서 상당한 효과를 볼 수 있었다.

  • PDF

Verification of the Torsional Amplification Factor for the Seismic Design of Torsionally Imbalanced Buildings (비틀림 비정형 건물의 내진설계를 위한 우발편심 비틀림 증폭계수 검증)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Because of the difference between the actual and computed eccentricity of buildings, symmetrical buildings will be affected by torsion. In provisions, accidental eccentricity is intended to cover the effect of several factors, such as unfavorable distributions of dead- and live-load masses and the rotational component of ground motion about a vertical axis. The torsional amplification factor is introduced to reduce the vulnerability of torsionally imbalanced buildings. The effect of the torsional amplification factor is observed for a symmetric rectangular building with various aspect ratios, where the seismic-force-resisting elements are positioned at a variable distance from the geometrical center in each direction. For verifying the torsional amplification factor in provisions, nonlinear reinforced concrete models with various eccentricities and aspect ratios are used in rock. The difference between the maximum displacements of the flexible edge obtained between using nonlinear static and time-history analysis is very small but the difference between the maximum torsional angles is large.

Vibration Control Performance Evaluation of Smart TMD for a Tilted Diagrid Tall Building (경사진 다이어그리드 비정형 초고층 건물에 대한 스마트 TMD의 제진성능평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.79-88
    • /
    • 2011
  • Recently, complex-shaped tall buildings represented by 3T(Twisted, Tapered, Tilted) are planed largely. A diagrid structural system is one of the most widely used structural system for complex-shaped tall buildings because of its structural efficiency and formativeness. Plans for tilted tall buildings are largely presented because of beauty of a sculpture and many of buildings use diagrid structural systems. Lateral displacements of tilted tall buildings are induced by not only lateral loads but also self weight. Therefore, reduction of lateral responses of tilted tall buildings is as important as typical tall buildings. In this study, a smart TMD is introduced to reduce seismic responses of tilted diagrid tall buildings and its control performance is evaluated. MR damper is employed for the smart TMD and ground-hook controller is used as a control algorithm for the smart TMD. 100-story tall building is used as an example structure. Control performances of uncontrolled case, controlled case with TMD and controlled case with smart TMD are compared and investigated. Numerical simulation has shown that smart TMD presented good control performance for displacement response but acceleration response was not controlled well.

Integrated Design Platform and Standard Data Model for the Irregular-shaped High-Rise Buildings (비정형 초고층 구조시스템 통합설계 플랫폼과 표준자료모델)

  • Jung, Jong-Hyun;Kim, Chee-Kyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.384-387
    • /
    • 2010
  • 비정형 초고층 구조시스템 통합설계 플랫폼은 비정형 초고층건물의 구조시스템 설계를 지원하는 여러프로그램들을 통합적으로 활용하여 구조설계자들이 협업을 수행하는 체계이다. 이 체계의 핵심적인 사항은 각 프로그램들이 필요한 자료들을 신속하고 정확하게 교환하는 것이다. 표준자료모델은 여러 프로그램들의 자료교환을 목적으로 적절한 범위 내에서 필요한 자료들을 취합하여 체계화한 것이다. 하지만 표준자료모델은 각 프로그램에서 요구되는 모든 자료들을 취합하고 그 목적에 부합되도록 체계화시킬 수 없어 문제가 발생한다. 이에 본 연구에서는 비정형 초고층건물 구조시스템 통합설계 플랫폼의 각 프로그램들이 표준 자료모델을 이용하여 자료를 교환하는 방법을 검토하고 비교하고자 한다.

  • PDF

A Study on the Static Eccentricities of Buildings Designed by Different Design Eccentricities (설계편심의 크기에 따른 비틀림 비정형 건물의 최종 정적편심 크기의 비교에 관한 연구)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.33-40
    • /
    • 2012
  • To reduce the vulnerability of torsional irregular buildings caused by seismic loads, the torsional amplification factor was introduced by the seismic code. This factor has been applied differently in a variety of seismic codes. In this study, the final static eccentricity, and the lateral and torsional stiffness ratios of buildings designed with different design eccentricities were compared. The increment of the torsional amplification factor resulted in a decrement of the final static eccentricity of the building. However, after reaching the maximum value of this factor, the final static eccentricity of the building increased again. The final static eccentricity of the building designed by multiplying the sum of the inherent and accidental eccentricity by the torsional amplification factor was zero or had a minus value, depending to the position of the vertical element.

A Study on Inelastic Behavior of an Asymmetric Tall Building (비대칭 초고층건물의 비탄성거동에 관한 연구)

  • 윤태호;김진구;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper, the inelastic behavior of an asymmetric tall building is investigated. The asymmetry in rigidity caused by the structural asymmetry induces torsional as well as lateral deformation. The inelastic analysis of such an asymmetric structure is difficult to carry out with a planar model and thus requires a full three dimensional model. In this paper a 102 story unsymmetric tall building is analized by static push-over procedure and its behavior is investigated. The analysis are performed with and without floor rotation to compare the results. According to the results the static behavior of the model building, as expected, turned out to be dependent heavily an the asymmetry of the plan shapes of the building.

  • PDF

Seismic Response of a High-Rise RC Bearing-Wall Structure with Irregularities of Weak Story and Torsion at Bottom Stories (저층부에 약층과 비틀림 비정형성을 가진 고층 비정형 RC벽식 구조물의 지진응답)

  • 이한선;고동우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.81-91
    • /
    • 2003
  • Recently, many high-rise reinforced concrete(RC) bearing-wall structures of multiple uses have been constructed, which have the irregularities of weak(or soft) story and torsion at the lower stories simultaneously. The study stated herein was performed to investigate seismic performance of such a high-rise RC structure through a series of shaking table tests of a 1: 12 model. Based on the observations of the test results, the conclusions are drawn as follows: 1) Accidental torsion due to the uncertainty on the properties of structure can be reasonably predicted by using the dynamic analysis than by using lateral force procedure. 2) The mode coupled by translation and torsion induced the overturning moments not only in the direction of excitations but also in the perpendicular direction: The axial forces in columns due to this transverse overturning moment cannot be adequately predicted using the existing mode analysis technique, and 3) the hysteretic curve and the strength diagram between base shear and torque(BST) clearly reveal the predominant mode of vibrations and the failure mode.

Evaluation and Adjustment of Lateral Displacement of Complex-shaped RC Tall Buildings Considering the Displacement by Tilt Angle of Each Floor (층경사각에 의한 횡변위를 고려한 비정형 고층건물의 횡변위 평가/보정)

  • Kim, Yungon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.551-558
    • /
    • 2015
  • Lateral displacement in the most complex-shaped tall buildings is caused by eccentric gravity loads which are induced by the difference in location between a center of mass and a center of stiffness. The lateral displacements obtained from analysis, using conventional procedures, are prone to overestimate the actual values because much of realignment efforts made during construction phase are ignored. In construction sequence analysis, the self-leveling of slab and the verticality of columns/walls could be considered at each construction stage. Moreover, the displacement compensation can be achieved by manual process such as re-centering - locating to global coordinates through surveying. Because the lateral displacement increases with the building height, it is necessary to set up adjustment plan through construction stage analysis in advance in order to result in displacements less than the allowable limits. Because analytical solution includes lots of assumptions, the pre-adjusting displacement should be reasonably controlled with considerations for the uncertainty due to these assumptions.