• Title/Summary/Keyword: 비정질 실리콘 평판형 검출기

Search Result 2, Processing Time 0.015 seconds

A Study of Image Characteristics due to Focus-Grid and Head Phantom Decentering from the Armorphos Silicon Thin Film Transistor Detector the Fixed Focus-Grid is Applied (고정식 초점형 격자가 적용된 비정절 실리콘 평판형 검출기에서 초점-격자와 두부 팬텀의 중심 변위에 의한 화질 특성에 관한 연구)

  • Choi, Jun-Gu;Kim, Byeong-Gi;Cha, Seon-Hwa;Kim, Gyeong-Su
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2007
  • This study aim to investigate image characteristics due to focus-grid and head phantom decentering from the armorphos silicon thin film transistor detector the fixed focus-grid is applied, wish to propose right use method of digital medical equipment. Acquired image according to focus-grid and head phantom position decentering using head phantom on armorphos silicon thin film transistor detector the fixed focus-grid is applied. acquired image evaluate pixel value, histogram, plot profile, surface plot using NIB (Image J) image analysis program and compared decentering image with standard image. Mean value and standard deviation value of focus-grid lateral decentering and duplex decentering of focus-grid and head phantom decreased by ratio, consequently increase of horizontality, diagonal decentering. also, deteriorated contrast of image because frequency of high pixel value decreases fairly. according increases decentering, image distortion phenomenon was increase, by next time, pixel mean value of head phantom decentering was no big change but horizontality, diagonal, mean value and standard deviation value of pixel decreased by ratio. Even if increase pixel noise of image because wide latitude and post processing ability of digital detector, radiotechnologist can not recognize. Therefore, radiotechnologist must recognize correctly the photographing factors which increases pixel noise on the grid system installation digital detector and should exam.

  • PDF

The Influence of the Change of Patient Radiation Exposure Dose Distribution on the Grid Condition and Detector Acquisition Dose on the Exposure Distance in the Use of Amorphous Silicon Thin Film Transistor Detector with AEC (자동노출제어장치를 이용한 비정질 실리콘 평판형 검출기에서 격자의 조건에 따른 환자선량 변화와 촬영 거리의 변화가 검출기 획득선량에 미치는 영향)

  • Yoon, Seok-Hwan;Choi, Jun-Gu;Han, Dong-Kyoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.23-30
    • /
    • 2007
  • This study attempts to propose an appropriate method of using digital medical imaging equipments, by studying the effects of automatic exposure control(AEC), grid ratio and the change of radiography distance on the patient dose and detertor acquisition dose during the procedure of acquiring image through a digital medical imaging detector. The change of dose following the change of grid ratio's exposure and radiography distance was measured, by using an abdominal phantom organized with tissue equivalent materials in an amorphous silicon thin film transistor detecter installed with AWC. The case to use grid ratio 12 : 1, focal distance 180cm to radiography distance 110cm in AEC, the patient dose increased rather when we used grid ration 10 : 1, focal distance 110cm. When AEC was not used,the dose necessary for image acquisition decreased as the grid ratio became higher and the distance became further. but detector acquisition dose was not reduced when in applied AEC. When purchasing digiral medical imaging equipments, optional items such as AEC and grid shall be accurately selected to satisfy the use of the equipments. Radiography error made by radiation technologist and unnenessary patient dose can be reduced by selecting equipments with a radiography distance marker equipment when it did not apply AEC. These equipments can also be helpful in maintaining high imaging quality, one of the merits of digital detectors.

  • PDF