• Title/Summary/Keyword: 비정질 규산염 나노입자

Search Result 3, Processing Time 0.017 seconds

Effect of Particle Size on the Atomic Structure of Amorphous Silica Nanoparticles: Solid-state NMR and Quantum Chemical Calculations (비정질 규산염 나노입자의 입자 크기에 따른 원자 구조 변화 : 고상 핵자기공명 분석 및 양자화학계산 연구)

  • Kim, Hyun-Na;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.321-329
    • /
    • 2008
  • Amorphous silica nanoparticles are among the most fundamental $SiO_2$ compounds, having implications in diverse geological processes and technological applications. Here, we explore structural details of amorphous silica nanoparticles with varying particle sizes (7 and 14 nm) using $^{29}Si$ and $^{1}H$ MAS NMR spectroscopy together with quantum chemical calculations to have better prospect for their size-dependent atomic structures. $^{29}Si$ MAS NMR spectra at 9.4 T resolve $Q^2,\;Q^3$ and $Q^4$ species at -93 ppm, -101 ppm, -110 ppm, respectively. The fractions of $Q^2,\;Q^3,\;O^4$ species are $7{\pm}1%,\;27{\pm}2%$, and $66{\pm}2%$ for 7 nm amorphous silica nanoparticles and $6{\pm}1%,\;21{\pm}2%$, and $73{\pm}2%$ for 14 nm amorphous silica nanoparticles. Whereas it has been suggested that $Q^2$ and $Q^3$ species exist on particles surfaces, the difference in $Q^{2}\;+\;Q^{3}$ fraction in both 7 and 14 nm particles is not significant, suggesting that $Q^2$ and $Q^3$ species could exist inside particles. $^{1}H$ MAS NMR spectra at 11.7 T shows diverse hydrogen environments, including physisorbed water, hydrogen bonded silanol, and non-hydrogen bonded silanol with varying hydrogen bond strength. The hydrogen contents in the 7nm silica nanoparticles (including water and hydroxyl groups) are about 3 times of that of 14 nm particles. The larger chemical shills for proton environments in the former suggest stronger hydrogen bond strength. The fractions of non-hydrogen bonded silanols in the 14 nm amorphous silica nanoparticles are larger than those in 7 nm amorphous silica nanoparticles. This observation suggests closer proximity among hydrogen atoms in the nanoparticles with smaller diameter. The current results with high-resolution solid-state NMR reveal previously unknown structural details in amorphous silica nanoparticles with particle size.

1H Solid-state NMR Methodology Study for the Quantification of Water Content of Amorphous Silica Nanoparticles Depending on Relative Humidity (상대습도에 따른 비정질 규산염 나노입자의 함수량 정량 분석을 위한 1H 고상 핵자기 공명 분광분석 방법론 연구)

  • Oh, Sol Bi;Kim, Hyun Na
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • The hydrogen in nominally anhydrous mineral is known to be associated with lattice defects, but it also can exist in the form of water and hydroxyl groups on the large surface of the nanoscale particles. In this study, we investigate the effectiveness of 1H solid-state nuclear magnetic resonance (NMR) spectroscopy as a robust experimental method to quantify the hydrogen atomic environments of amorphous silica nanoparticles with varying relative humidity. Amorphous silica nanoparticles were packed into NMR rotors in a temperature-humidity controlled glove box, then stored in different atmospheric conditions with 25% and 70% relative humidity for 2~10 days until 1H NMR experiments, and a slight difference was observed in 1H NMR spectra. These results indicate that amount of hydrous species in the sample packed in the NMR rotor is rarely changed by the external atmosphere. The amount of hydrogen atom, especially the amount of physisorbed water may vary in the range of ~10% due to the temporal and spatial inhomogeneity of relative humidity in the glove box. The quantitative analysis of 1H NMR spectra shows that the amount of hydrogen atom in amorphous silica nanoparticles linearly increases as the relative humidity increases. These results imply that the sample sealing capability of the NMR rotor is sufficient to preserve the hydrous environments of samples, and is suitable for the quantitative measurement of water content of ultrafine nominally anhydrous minerals depending on the atmospheric relative humidity. We expect that 1H solid-state NMR method is suitable to investigate systematically the effect of surface area and crystallinity on the water content of diverse nano-sized nominally anhydrous minerals with varying relative humidity.

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.