• Title/Summary/Keyword: 비정질화

Search Result 61, Processing Time 0.016 seconds

MgO doping and annealing effect on high temperature electrical resistivity of AlN-Y2O3 ceramics (MgO doping 및 annealing이 AlN-Y2O3 세라믹스의 고온전기저항에 미치는 영향)

  • Yu, Dongsu;Lee, Sung-Min;Hwang, Kwang-Taek;Kim, Jong-Young;Shim, Wooyoung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.235-242
    • /
    • 2018
  • High temperature electrical conductivity of Aluminum Nitride (AlN) ceramics sintered with $Y_2O_3$ as a sintering aid has been investigated with respect to various sintering conditions and MgO-dopant. When magnesium oxide is added as a dopant, liquid glass-film and crystalline phases such as spinel, perovskite are formed as second phases, which affects their electrical properties. According to high temperature impedance analysis, MgO doping leads to reduction of activation energy and electrical resistivity due to AlN grains. On the other hand, the activation energy and electrical resistivity due to grain boundary were increased by MgO doping. This is a result of the formation of liquid glass film in the grain boundary, which contains Mg ions, or the elevation of schottky barrier due to the precipitation of Mg in the grain boundary. For the annealed sample of MgO doped AlN, the electrical resistivity and activation energy were increased further compared to MgO doped AlN, which results from diffusion of Mg in the grains from grain boundary as shown in the microstructure.