• Title/Summary/Keyword: 비정상 진동

Search Result 294, Processing Time 0.026 seconds

Analysis of the Aeroacoustic Characteristics of Cross-Flow Fan Using a Commercial CFD Code (상용 CFD 코드를 이용한 횡류홴 공력소음 특성 해석)

  • Jeon, Wan-Ho;Chung, Moon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.289-294
    • /
    • 2002
  • In this study, performance, flow characteristics and noise of a cross-flow-fan system, used in indoor unit of the split-type air conditioner, were predicted by computational simulation. Triangular elements were used to mesh the calculation domain and quadrilateral elements were attached to the blade surfaces and walls to enhance the simulation quality. The unsteady incompressible Wavier-Stokes equations were solved using a sliding mesh technique on the interface between rotating fan region and the outside. Two stripes of velocity stream inside the cross-flow-fan were shown - the one was due to the eccentric vortex and the other was due to the normal entrance flow. As the flow rate increased, the center of the eccentric vortex moved toward the inner blade tip and rear-guide, and the exiting flow still had velocity variation along the stabilizer, which can increase the noise level. The acoustic pressure was calculated by using Lowson's equation. From the calculated acoustic pressure, it was found that the trailing edge is a dominant of acoustic generation.

  • PDF

Effect of Reduced Frequency on the Flow Pattern of Pitch Oscillating Elliptic Airfoil (피치 진동하는 타원형 에어포일의 환산주파수가 날개 주위 유동패턴에 미치는 영향)

  • Lee, Ki-Young;Chung, Hyong-Seok;Sohn, Myong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.128-136
    • /
    • 2006
  • The purpose of this paper is to examine the dynamic stall characteristics of an elliptic airfoil when subject to constant pitch motions. In this study, which was motivated by the pressing need for a greater understanding of the reduced frequency$({\kappa})$ effects on flow patterns of elliptic airfoil, the various reduced frequencies were considered. The result confirms that the reduced frequency has a profound effects on the flow patterns. The increase of ${\kappa}$ accelerate the separation bubble bursting process up to ${\kappa}=0.10$, then diminish with further increase in ${\kappa}$. Compared with static condition, the dynamic pitching airfoil delays stall angle approximate $4{\circ}{\sim}5{\circ}$ during pitch-up stroke for ${\kappa}=0.10$. Results from this qualitative analysis provided valuable insight Into the control of dynamics stall.

A Numerical Study on the Generation of Aeroacoustic Sound from Sirocco Fans (시로코 홴의 공력소음 발생에 관한 수치적 연구)

  • 전완호;백승조;김창준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.42-47
    • /
    • 2002
  • Sirocco fans are widely used in HVAC and air conditioning systems, and the noise generated by these machines causes one of the most serious problems. In general, the sirocco fan noise is often dominated by tones at BPF(blade passage frequency) and broadband noise. However, only a few researches have been carried out on predicting the aeroacoustic noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a sirocco fan. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson\`s method is used to predict the acoustic source. Reasonable results are obtained not only fur the tonal noise but also far the amplitudes of the broadband noise. Acoustic pressure is proportional to (Ω)2.3, which is the similar value with the measured data.

Flow and Flow Noise Analysis of HSM by Using CAA++ (CAA++를 이용한 HSM에 대한 유동과 유동소음 해석)

  • Kim, Young Nam;Chae, Jun Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.205-212
    • /
    • 2014
  • In this paper, sunroof buffeting analysis for Hyundai simple model(HSM) is studied computationally. For validation, the velocity profile of boundary layer around the opening of HSM was obtained and compared with experimental results. The analysis of sunroof buffeting is done in two parts. First a steady state solution is obtained using the Reynolds Averaged Navier Stokes (RANS) solver, and then the computed flow field information is used as input for CAA++. Second transient simulation by CAA++ is performed for the peak sound pressure levels and peak frequencies of buffeting noise over the ranges of flow velocities. The benchmark results of frequency and sound pressure levels showed the general phenomena and matched well with the experimental data obtained by Hyundai Motor Car.

Propagation Characteristics of the Impulse Noise Emitted from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음의 전파특성)

  • 제현수;양수영;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.168-173
    • /
    • 2003
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube. The pressure amplitudes and directivities of the impulse wave propagating from the exit of perforated pipe with several different configurations are measured and analyzed fur the range of the incident shock wave Mach number between 1.02 and 1.2. In the experiments, the impulse waves are visualized by a Schlieren optical system for the purpose of investigating their propagation pattern. The results obtained show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the all directions, indicating that the directivity pattern is almost same regardless of the pipe type. Moreover, it is shown that for the far sound field the perforated pipe has little performance to suppress the impulse noise.

  • PDF

Study of the Weak Shock Wave Propagating inside an Engine Exhaust Muffler (엔진 배기 소음기내를 전파하는 약한 충격파에 관한 연구)

  • 이동훈;권용훈;김희동
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.510-519
    • /
    • 2002
  • The present study addresses a computational work of the weak shock wave propagating inside an automobile exhaust muffler. Several different types of the silencer systems are employed to investigate the magnitude of the shock wave during propagating through them. The Initial shock wave Mach number $M_s$ is varied between 1.01 and 1.30, and a normal shock wave is given at the inlet of the silencer systems. The second order total variation diminishing scheme Is employed to solve the two dimensional, compressible, unsteady Euler equations. The present computational results are compared with the previous experimental ones available. The present computations predict the experimental results with a quite good accuracy. Of the four silencer systems applied. the most desirable silencer system to reduce the peak pressure at the exalt of the exhaust pipe is discussed from the Point of view of the engineering design of the silencer systems.

Numerical Anslysis of Transcritical Flow in Open Channels Using High-Resolution scheme II. : Applications (고정확도 수치기법을 이용한 하천 천이류 해석 II. : 적용)

  • Kim, Won;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • A numerical model for analyzing transcritical flow in open channel is tested to various cases of channel shape. As the numerical models developed for transcritical flow until now mainly focused on the application to only prismatic or hypothetical channels, there are some restrictions to apply the nonprismatic channels. In this study, to verify the accuracy and stability of second-order implicit ENO scheme, the numerical model was applied to the channels which haute the varying channel bed and width. Also the numerical model was applied to unsteady flow as well as steady flow. The study shows that the numerical model provides good accuracy in the calculation of stage and velocity with no numerical oscillation, particularly in the calculation of hydraulic jump and discontinous flow Then the implicit ENO scheme demonstrated good accuracy as a high-resolution scheme and stability as an implicit scheme.

  • PDF

Oscillating Flow Field Analysis as Shape of Air Chamber in OWC-type Wave Energy Conversion (OWC형 파력발전장치 공기실 형상에 따른 왕복유동장 해석)

  • Moon, Jae-Seung;Hong, Key-Yong;Shin, Seung-Ho;Hyun, Beom-Soo;Ryu, Hywang-Jin;Park, Soon-Jong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.39-44
    • /
    • 2006
  • An OWC-type Wave Energy Conversion passes through 3 steps energy conversion process. This paper deal with the internal oscillating flow and effect of shape of air chamber and duct at setting place of turbine by numerical analysis using commercial CFD code, FLUENT. Air chamber and duct in OWC-type wave energy conversion are adopting sudden expanded and contracted form for high-efficiency. So, whole oscillating flow from OWC-type chamber to outlet duct through duct was solved by steady and unsteady analysis in order that flow efficiency of air chamber and duct was made better.

  • PDF

Oscillating Flow Field Analysis as Shape of Air Chamber in OWC-type Wave Energy Conversion (OWC형 파력발전장치 공기실 형상에 따른 왕복유동장 해석)

  • Hong, Key-Yong;Shin, Seung-Ho;Hyun, Beom-Soo;Ryu, Hwang-Jin;Park, Soon-Jong;Moon, Jae-Seung
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.29-33
    • /
    • 2007
  • An OWC-type Wave Energy Conversion passes through 3 steps energy conversion process. This paper deal with the internal oscillating flow and effect of shape of air chamber and duct at setting place of turbine by numerical analysis using commercial CFD code, FLUENT. Air chamber and duct in OWC-type wave energy conversion are adopting sudden expanded and contracted form for high-efficiency. So, whole oscillating flow from OWC-type chamber to outlet duct through duct was solved by steady and unsteady analysis in order that flow efficiency of air chamber and duct was made better.

Manufacturing Data Preprocessing Method and Product Classification Method using FFT (FFT를 활용한 제조데이터 전처리 및 제품분류)

  • Kim, Han-sol;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.82-84
    • /
    • 2021
  • Through the smart factory construction project, sensor data such as power, vibration, pressure, and temperature are collected from production facilities, and services such as predictive maintenance, defect prediction, and abnormality detection are developed through data analysis. In general, in the case of manufacturing data, because the imbalance between normal and abnormal data is extreme, an anomaly detection service is preferred. In this paper, FFT method is used to extract feature data of manufacturing data as a pre-stage of the anomaly detection service development. Using this method, we classified the produced products and confirmed results. In other words, after FFT of the representative pattern for each product, we verified whether product classification was possible or not, by calculating correlation coefficient.

  • PDF