• Title/Summary/Keyword: 비정상성 빈도해석

Search Result 105, Processing Time 0.046 seconds

Derivation of SDF(Severity-Duration-Frequency) Curve using Non-Stationary Drought Frequency Analysis (비정상성 가뭄빈도해석에 의한 SDF 곡선의 유도)

  • Jang, Ho Won;Park, Seo Yeon;Kim, Tae Woong;Lee, Joo Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.150-150
    • /
    • 2017
  • 기후변화로 인하여 극한 홍수와 극한 가뭄 발생이 증가할 것으로 전망하고 있어 이에 대한 위험이 대두되고 있는 실정이다. 홍수 및 가뭄 수문시계열의 빈도해석시에 일반적으로 활용되는 정상성 빈도해석기법은 수문자료의 정상성을 기반으로 한 빈도해석이 대부분이기 때문에 기후변화 및 수문자료의 비정상성을 반영한 새로운 빈도해석 기법이 요구되고 있는 상황이다. 본 연구에서는 5개의 대표 관측지점(서울, 포항, 추풍령, 여수, 광주)를 선별하고 1976년부터 2015년까지 일강우자료를 활용하여 기상학적 가뭄지수인 SPI(Standardized Precipitation Index)를 산정하였다. 산정한 SPI의 경향성을 Mann-Kendall 분석을 하였으며, 정상성 및 비정상성 빈도해석을 위하여 최적확률분포로 선정된 GEV 분포 적용하였다. 본 연구에서는 가뭄빈도해석을 위하여 SPI를 입력자료로 활용하였으며, 산정된 SPI의 비정상성을 반영한 비정상성 빈도해석의 경우 Bayesian 모형을 기반으로 한 MCMC(Markov Chain Monte Carlo) 모의를 이용하여 극치분포의 사후분포 매개변수를 추정하였다. 추정 값을 바탕으로 하여 가뭄의 관측소별 빈도해석을 실시하였고 재현기간별-지속기간별 가뭄심도를 추정하여 관측소별 가뭄심도-지속기간-빈도(SDF,Severity-Duration-Frequency) 곡선을 유도하였다. 본 연구를 통하여 정상성과 비정상성 빈도해석 결과의 비교연구를 수행하였으며 기후변화에 따른 비정상 시계열로 구성된 가뭄빈도해석에 매우 유용하게 적용될 수 있을 것으로 나타났다.

  • PDF

Investigation of Heterogeneity Measure for Nonstationary Regional Frequency Analysis (비정상성 지역빈도해석을 위한 지역구분에 따른 이질성 척도 검토)

  • Ahn, Hyunjun;Shin, Ju-Young;Jung, Tae-Ho;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.340-340
    • /
    • 2018
  • 전 세계적으로 기후변화로 인해 나타나는 이상기후의 영향을 고려하기 위해서 수문빈도해석분야에서는 비정상성 빈도해석에 관한 연구가 활발히 진행 중이다. 자료의 비정상성을 고려하여 빈도해석을 수행하는 방법은 다양하게 연구되어오고 있는데, 그중 시간에 따른 자료의 변화를 고려할 수 있도록 기존 모형의 매개변수에 시간을 고려할 수 있는 변수를 더하여 모형을 구축하는 기법이 비정상성 빈도해석기법으로 널리 활용되고 있다. 한편, 이러한 비정상성 가정에 관련한 연구들은 주로 지점빈도해석 기법을 중심으로 개발되어왔을 뿐, 아직 지역빈도해석기법을 대상으로 시도된 비정상성 연구는 미비한 실정이다. 지역빈도해석은 수문학적 동질지역이라는 가정을 바탕으로 표본의 확장을 통해 지점빈도해석보다 비교적 안정적인 빈도해석을 수행할 수 있는 기법으로 널리 알려져 있다. 따라서 지역빈도해석에서 수문학적 동질지역의 구분은 지역빈도해석 절차 중 가장 중요한 절차라고 할 수 있다. 이러한 수문학적 동질지역 구분을 위해서는 지점별로 가지고 있는 위치 정보나 수문 자료의 통계값과 같은 해당 지점을 대표할 수 있는 인자들이 필요하다. 본 연구에서는 모의실험을 통해 경향성이 나타나는 가상의 지점 자료를 생성한 뒤, 지역구분을 통해 자료의 비정상성이 나타나는 지역의 지역구분 결과를 살펴보고 이질성 척도(heterogenity measure)를 산정하였다. 이를 바탕으로 비정상성 지역빈도해석에서 이질성 척도의 적용성을 검토하고자 한다. 본 연구의 결과는 추후 기후변화의 영향이 나타나는 수문학적 동질 및 비 동질지역의 분석 및 비정상성 지역빈도해석을 위한 기초자료로 활용될 것으로 기대된다.

  • PDF

Analysis on Nonstationarity in Mean Sea Level and Nonstationary Frequency Analysis based on Hierarchical Bayesian Model (해수면의 비정상성 검토 및 계층적 Bayesian 모형을 이용한 비정상성 빈도해석 기법 개발)

  • Kim, Yong Tak;Sumiya, Uranchimeg;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.451-451
    • /
    • 2015
  • 최근 1900년부터 1990년 사이 해수면은 매년 평균 1.2mm 상승했지만 1990년부터는 매년 평균 3mm씩 높아지고 있으며, 이에 1990년부터 현재까지 해수면 수위의 상승속도가 이전 90년 동안 측정된 수치보다 2.5배 빠르다는 연구결과가 발표되었다. 해수면 상승으로 인한 피해는 범람과 침식을 야기할 수 있으며 해일 및 폭풍으로 인한 피해를 증가시킴으로 물질적 피해와 인명 피해를 유발할 수 있다. 이러한 이유로 해수면 상승에 따른 과학적인 분석과 신뢰성 있는 전망을 통하여 해수면 상승에 따른 대응과 대비가 필요하다. 이에 본 연구에서는 비정상성 빈도해석 방법을 통하여 미래의 해수면 상승을 고려할 수 있는 비정상성 빈도해석 기법을 개발하였다. 본 연구에서는 극치사상을 추출하기 위해 국립해양조사원 (Korea Hydrographic and Oceanographic Administration, KHOA)에서 관리한 45개 조위관측소의 시 조위 자료를 이용하였다. 45개 조위관측소의 한 시간 단위 자료로부터 연최대 및 연평균 조위계열 (annual average and annual maximum sea level series)을 추출하였다. 본 연구에서는 한반도 해안을 동해안, 서해안, 남해안, 제주 권역으로 구분하고 빈도 해석의 신뢰성을 만족하기 위해 자료 구축기간이 20년 이상이며, 각 해안을 나타낼 수 있는 지점을 선정하였다. 비정상성 빈도해석은 Gumbel 극치분포를 적용하였으며, 계층적 Bayesian 기법을 결합하여 매개변수들에 대한 사후분포를 추정하였다. 본 연구에서는 대부분의 지점에서 비정상성 빈도해석 결과와 정상성 빈도해석 결과와 상당한 차이를 보여주고 있으며, 이는 주로 정상성 가정에 기인하는 문제점으로 판단된다. 향후 기후변화에 따른 연안지역의 홍수 및 사회기반시설의 위험도를 평가하기 위해서는 비정상성을 고려한 빈도해석 절차의 수립과 적용이 필요할 것으로 판단된다.

  • PDF

The Assessment of Various Index Flood Models for Nonstationary Regional Frequency Analysis (비정상성 지역빈도해석을 위한 홍수지수법의 형태에 따른 성능 평가)

  • Kim, Hanbeen;Kim, Sunghun;Joo, Kyungwon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.80-80
    • /
    • 2017
  • 최근 수문자료에 비정상성이 관측됨에 따라 비정상성 지역빈도해석에 대한 연구가 진행되고 있다. 홍수지수법 (index flood method)은 지역빈도해석에서 가장 널리 사용되는 방법으로 각 지점의 특성을 반영하는 홍수지수 (index flood)와 지역적 특성을 대표하는 성장곡선 (growth curve)을 통해 확률수문량을 산정하며, 비정상성 지역빈도해석의 경우 홍수지수법 내의 요소들을 시간에 대한 함수로 정의함으로써 비정상성을 반영한다. 본 연구에서는 다양한 형태의 비정상성 홍수지수법을 통해 비정상성 지역빈도해석을 수행하고 각 방법에 따른 성능을 비교하였다. 이를 위해 경향성을 가지는 매개변수를 포함하는 비정상성 분포형을 모분포로 가지는 자료를 생성하였으며, 이를 기반으로 다양한 경향성을 가지는 자료들로 지역을 구성하였다. 구성된 지역에 대해 동질성 검토를 수행하여 비정상성 자료들이 포함된 지역의 동질성을 확인하였으며, Monte Carlo 모의실험을 통해 각 비정상성 홍수지수모형에 대한 확률수문량의 RRMSE와 RBIAS를 산정하여 성능을 평가하였다.

  • PDF

Analysis on Nonstationarity of Hydrologic Variable and Development of Bayesian Nonstationary Rainfall Frequency Analysis (국내 수문자료의 비정상성 특성 검토 및 Bayesian 비정상성 강수 빈도해석 기법 개발)

  • Kwon, Hyun-Han;Moon, Young-Il;Park, Rae-Gun;Park, Se-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.214-219
    • /
    • 2009
  • 본 연구에서는 기후변동성 및 기후변화와 같은 외부충격을 극치수문사상 해석에 반영할 수 있는 비정상성 빈도해석 기법을 제안하고 서울지방 강수량에 대해서 검토를 실시하였다. 이러한 외부인자를 고려할 경우에 가장 큰 어려운 점은 극치분포의 매개변수를 효과적으로 추정하면서 동시에 불확실성을 정량화해야 한다는 점이다. 이러한 점에서 본 연구에서 제시한 Bayesian 방법은 상대적으로 우수한 해석 능력을 나타내고 있는 것으로 판단된다. 비정상성 빈도해석 기법을 서울지방 강수량에 선형경향성과 기후변화 영향을 고려하여 적용한 결과 현재에 비해 극치강수량에 발생 빈도가 크게 나타나는 특성을 보여주고 있다. 그러나 보다 신뢰성 있는 해석을 위해서 다양한 기상패턴 및 모형을 검토하는 것이 바람직 할 것으로 판단된다.

  • PDF

Application of Nonstatinoary Regional Frequency Analysis Based on Population Index Flood Model (모분포 홍수지수모형을 이용한 비정상성 지역빈도해석 기법 적용)

  • Kim, Hanbeen;Lee, Joohyung;Park, Jaeheyon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.98-98
    • /
    • 2020
  • 모분포 홍수지수모형은 여러 관측지점의 수문자료를 활용하여 설계수문량을 산정하는 지역빈도해석을 위한 모형 중 하나이다. 기존의 홍수지수모형은 동질지역 내 각 지점의 표본통계량을 통해 표준화된 자료들을 기반으로 설계수문량을 산정하므로 왜곡이나 오차가 발생하는 반면, 모분포 홍수지수모형은 미지의 모분포에 대한 통계량으로 표준화한 설계수문량은 동질지역 내 모든 지점에 대해 동일하다는 가정을 기반으로 지역빈도해석을 수행하므로 보다 정확한 설계수문량 산정이 가능하다. 본 연구에서는 모분포 홍수지수모형에서의 미지의 모분포를 비정상성 GEV분포형으로 가정함으로써 각 지점의 비정상성을 고려한 설계수문량을 산정할 수 있는 비정상성 지역빈도해석 기법을 개발하고 그 적용성을 알아보고자 한다. 이를 위해 우리나라 전역에 분포된 10개의 강우관측 지점을 하나의 지역으로 구성하고 이질성척도를 통해 지역동질성을 확인하였다. 먼저, 각 지점의 모분포를 가정하기 위하여 각 지점의 연 최대치 강우자료에 대하여 Mann-Kendall test를 통해 경향성을 확인하였다. 경향성이 없는 지점의 경우 정상성 GEV분포형, 경향성이 나타나는 지점의 경우 다양한 형태의 비정상성 GEV분포형 중 Akaike information criterion을 통해 선정된 비정상성 GEV분포형을 모분포로 가정하고, 모분포 홍수지수모형을 적용하여 확률강우량을 산정하였다. 대상 지역에 대한 모의실험을 통해 비정상성을 고려한 모분포 홍수지수모형의 성능을 지점빈도해석 및 기존의 홍수지수모형과 비교하였으며, 정상성 지역빈도해석 대비 비정상성 지역빈도해석을 통해 산정된 확률강우량의 비교를 통해 그 적용성을 평가하였다.

  • PDF

Development of a nonstationary regional frequency analysis model for drought (비정상성 가뭄 지역빈도해석 모형 개발)

  • Min-Kyu Jung;Pamela Sofia Fabian;Minwoo Park;Hyun-Han Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.272-272
    • /
    • 2023
  • 기후변화로 인해 많은 경우 강수량은 증가할 것으로 전망되지만 시공간적 편차 또한 커짐으로써 가뭄 위험은 증가할 것으로 예상된다. 가뭄 위험도 평가는 강수량, 유출량 등 수문자료로부터 추출한 가뭄변량의 빈도해석을 통해 이루어질 수 있다. 빈도해석의 대상이 되는 수문변량의 통계적 속성이 일정하게 유지되는 정상성의 가정은 기존 빈도해석 방법의 핵심이 되지만, 최근 기후변화로 인한 수문변량의 통계적 특성 변화가 발생할 것으로 예상되기 때문에 이러한 비정상성의 특성을 빈도해석 시 고려할 필요가 있다. 자료의 비정상성을 평가하는데 짧은 기록을 갖는 자료로부터 변화 추세를 신뢰성 있게 평가하는 것은 어려움이 크다. 이러한 점에서 지점자료를 통합적으로 활용할 수 있는 지역빈도해석 절차 도입을 통해 해석 결과에 신뢰성을 확보하는 것이 합리적이다. 본 연구에서는 유역단위에서 가뭄의 지속기간과 심도 사이의 상호의존성을 고려하기 위해 이변량 Copula 함수 기반 가뭄 지역빈도해석을 도입했으며, 두 가뭄변량의 주변확률분포의 매개변수는 시간에 따른 함수로 가정하였다. 모형의 모든 매개변수는 계층적 Bayesian 모형을 통해 동시에 추정하였다. 최종적으로 주어진 가뭄빈도에 해당하는 시간에 따라 변화하는 가뭄 위험을 평가하였다.

  • PDF

Mixed distributions and Laten Process over Nonstationary Rainfall/Flood Frequency Estimates over South Korea: The Role of Large Scale Climate Pattern (혼합 분포와 은닉 과정 모의를 통한 비정상성 강우/빈도 빈도해석: 전지구 기상학적 변동성의 역할)

  • Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.8-8
    • /
    • 2018
  • 전통적인 빈도해석은 정상성 가정을 기초로 단일 확률분포를 강우 및 홍수량 자료에 적용하는 과정을 통해 확률수문량을 추정하는 것을 목적으로 하고 있다. 그러나 전지구적인 기상학적 변동성 및 기후변화로 기인하는 극치수문량의 발생 빈도 및 양적 크기의 변화는 확률통계학적 관점에서 서로 다른 분포특성을 가지게 된다. 대표적인 기상변동성인 엘니뇨가 발생하는 경우 지역에 따라 홍수 및 가뭄이 발생 발생하게 되며, 이러한 극치수문량은 일반적으로 나타나는 홍수 및 가뭄의 분포특성과는 상이한 경우가 많다. 즉, 2개 이상의 확률분포 특성이 혼재된 혼합분포의 특성을 가지는 경우가 나타내게 되며 이를 고려한 빈도해석 기법의 개발 및 적용이 필요하다. 혼합분포를 활용한 빈도해석에서 가장 중요한 사항 중에 하나는 개별 분포에 적용되는 가중치를 추정하는 것으로서 통계학적 관점에서 자료의 특성에 근거하여 내재되어 있는 은닉상태(latent process)를 추정하는 과정과 유사하다. 이와 더불어 앞서 언급된 기상학적 변동성을 빈도해석에 반영하기 위한 비정상성 해석기법의 개발 및 적용도 필요하다. 본 연구에서는 혼합분포를 활용한 비정상성빈도해석모형을 개발하는데 목적이 있으며 개별매개변수의 동적거동 뿐만 아니라 가중치에 대한 시간적인 종속성도 고려할 수 있는 모형으로 동적모형으로 다양한 실험적 해석이 가능하다. 본 연구에서는 개발된 모형을 기반으로 엘니뇨와 같은 기상변동성에 따른 강우 및 홍수빈도해석 측면에서 은닉상태에 변화, 이로 인한 확률분포의 특성 및 설계수문량의 동적변동성을 평가하고자 한다.

  • PDF

Application Study of Nonstationary GEV Model for Annual Maximum Precipitation Data using AICc and BIC (AICc와 BIC를 이용한 비정상성 GEV 모형의 적용)

  • Kim, Hanbeen;Kim, Sooyoung;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.143-143
    • /
    • 2015
  • 기존의 빈도해석에서는 자료의 정상성을 가정하며, 이에 따라 적정모형 선정 시에 $x^2$ 검정이나 PPCC(Probability Plot Correlation Coefficient)검정과 같은 적합도 검정방법을 사용한다. 하지만 자료에서 경향성이 나타나거나 평균, 분산, 매개변수 등이 시간에 따라 변하는 등의 비정상성 현상들이 관측됨에 따라 비정상성 빈도해석에 관한 연구들이 활발히 진행되고 있다. 비정상성 빈도해석에서는 시간항과 같은 공변량이 포함된 매개변수를 가지는 비정상성 모형을 적용하게 되는데, 시간에 따라 매개변수가 계속 변하므로 매개변수에 따라 검정통계량이 고정되어 있는 기존의 적합도 검정방법의 적용이 어렵다. 따라서 비정상성 빈도해석의 적정 모형 선정에 적용할 수 있는 방법으로 최우도 함수에 기반한 모형 평가 방법인 AIC와 BIC가 추천되고 있으며 자료길이가 충분하지 않은 경우에는 AIC 대신하여 AICc의 사용이 추천되고 있다. 본 연구에서는 극치사상을 나타내는데 적합한 분포형인 GEV분포형의 위치, 규모 매개변수를 시간항으로 나타낸 다양한 비정상성 GEV모형에 대하여 Monte-Carlo 모의실험을 통해 AICc와 BIC의 적용성을 검토하였으며, 비정상성이 관측되는 실측 자료에 적용해보았다.

  • PDF

Nonstationary Frequency Analysis at Seoul Using a Power Model (Power 모형을 이용한 서울지점 비정상성 빈도해석)

  • Lee, Gi-Chun;Kim, Gwang-Seob;Choi, Kyu-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.461-461
    • /
    • 2012
  • 본 연구는 서울 지점의 목표연도(2040, 2070, 2100년)별 재현기간에 따른 확률강수량을 산정하기 위해 지속시간 24시간에 대한 연 최대 강수량 자료를 구축하여 비정상성 빈도해석을 수행하였다. 연 최대강수량 자료를 이용해 초기 20년을 기준으로 1년씩 추가한 연 최대 강수량 누적 자료를 구축한 후, 누적 기간별 자료의 평균, 위치매개변수, 축척매개변수를 산정하였다. Gumbel 분포를 이용해 비정상성 빈도해석을 실시하였으며, 각 매개변수의 경우 확률가중모멘트법을 이용해 산정하였다. 산정된 누적평균 강수량과 연도와의 선형회귀분석을 실시한 방법뿐만 아니라 서울 지점이 속한 한강유역의 전 지점들을 이용한 유역의 누적평균 강수량 자료에 대하여 연도와의 Logsitic 회귀분석 및 Power Model을 이용해 서울 지점의 목표연도별 누적평균 강수량을 산정하였고 이를 통해 목표연도별 위치매개변수 및 축척매개변수를 구해 목표연도별 재현기간에 따른 확률강수량을 산정하였다. 선형회귀분석을 이용한 비정상성 빈도해석의 경우, 목표연도가 증가함에 따라 선형적인 증가에 의해 매우 높은 누적평균 강수량이 나타나 확률강수량의 경우에도 정상성임을 가정한 확률강수량에 비해 매우 높게 나타나 타당한 확률강수량이라 함에 한계가 있음을 보였다. 유역의 평균거동과 Logistic 회귀분석을 실시하여 확률강수량을 산정하였을 때에는, 선형 회귀분석에 비해 정상성임을 가정한 확률강수량보다 크게 증가하지 않고 비교적 안정적인 증가가 나타났다. 하지만 Logistic 회귀분석을 이용한 누적평균 강수량 산정에 있어서 목표연도 2040년에 도달하기 전에 미리 수렴하는 형태를 보여 모든 목표연도의 확률강수량이 동일한 값을 가지는 한계가 나타났다. 한강 유역의 평균거동과 Power Model을 이용한 비정상성 빈도해석의 경우, 선형회귀분석 및 Logistic 회귀분석을 통한 비정상성 빈도해석에서 나타난 문제점을 보완할 수 있는 확률강수량이 나타남을 보였다.

  • PDF