• Title/Summary/Keyword: 비정렬 셀 중심 방법

Search Result 20, Processing Time 0.027 seconds

Development of 3-D Flow Analysis Code Using Unstructured Grid System (I) - Numerical Method - (비정렬격자계를 사용하는 3차원 유동해석코드 개발 (I) - 수치해석방법 -)

  • Kim, Jong-Tae;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1049-1056
    • /
    • 2005
  • A conservative pressure-based finite-volume numerical method has been developed for computing flow and heat transfer by using an unstructured grid system. The method admits arbitrary convex polyhedra. Care is taken in the discretization and solution procedures to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are found by a novel second-order accurate spatial discretization. Momentum interpolation is used to prevent pressure checkerboarding and the SIMPLE algorithm is used for pressure-velocity coupling. The resulting set of coupled nonlinear algebraic equations is solved by employing a segregated approach, leading to a decoupled set of linear algebraic equations fer each dependent variable, with a sparse diagonally dominant coefficient matrix. These equations are solved by an iterative preconditioned conjugate gradient solver which retains the sparsity of the coefficient matrix, thus achieving a very efficient use of computer resources.

NUMERICAL SIMULATION OF LID-DRIVEN FLOW IN A SQUARE CAVITY AT HIGH REYNOLDS NUMBERS (정사각 캐비티내 고레이놀즈수 Lid-Driven 유동의 수치해석)

  • Myong H. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.18-23
    • /
    • 2005
  • Numerical simulations of two-dimensional steady incompressible lid-driven flow in a square cavity are presented by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. Solutions are obtained for configurations with a Reynolds number as high as 10,000 with both rectangular and hybrid types of unstructured grid mesh in order to validate the code's independency of grid type. Interesting features of the flow are presented in detail and comparisons are made with benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the lid-driven cavity flow at high Reynolds numbers with no grid type dependency.

NUMERICAL STUDY ON TWO-DIMENSIONAL MULTIPHASE FLOWS DUE TO DENSITY DIFFERENCE WITH INTERFACE CAPTURING METHOD (경계면 포착법을 사용한 밀도차에 따른 다상유동에 관한 수치해석적 연구)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.214-219
    • /
    • 2007
  • Both the bubble rising in a fully filled container and the droplet splash are simulated by a solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present code simulate complex free surface flows such as multi phase flows due to large density difference efficiently and accurately.

  • PDF

Detailed Flow Analysis of Helicopter Shrouded Tail Rotor in Hover Using an Unstructured Mesh Flow Solver (비정렬격자계를 이용한 헬리콥터 덮개 꼬리 로터의 제자리 비행 유동 해석)

  • Lee, Hui Dong;Gwon, O Jun;Gang, Hui Jeong;Ju, Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • Detailed flow of a shrouded tail rotor in hover is studied by using a compressible inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. Numerical simulation is made for a single blade attached to the center body and guide by the duct by imposing a periodic boundary condition between adjacent rotor blades. The results show that the performance of an isolated rotor without shroud compares well with experiment. In case of a shrouded rotor, correction of the collective pitch angle is made such that the overall performance matches with experiment to account for the uncertainties of the experimental model configuration. Details of the flow field compare well with the experiment confirming the validity of the present method.

Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces (친수성/소수성 수평 표면상에서의 액적이송 메커니즘)

  • Myong, Hyon Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.513-523
    • /
    • 2014
  • A fluid transport technique is a key issue for the development of microfluidic systems. In this study, the movement of a droplet on horizontal hydrophilic/hydrophobic surfaces, which is a new concept to transport droplets without external power sources that was recently proposed by the author, was simulated using an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The droplet transport mechanism is examined through numerical results that include velocity vectors, pressure contours, and total kinetic energy inside and around the droplet.

Behavior of Liquid Droplet Driven by Capillarity Force Imbalance on Horizontal Surface Under Various Conditions (다양한 조건하에서 모세관력 불균형에 의해 구동되는 수평 표면 위의 액적 거동)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.359-370
    • /
    • 2015
  • The present study aims to numerically investigate the behavior of liquid droplet driven by capillarity force imbalance on horizontal surfaces ranging from hydrophilic to hydrophobic, under various conditions. The droplet behavior has been simulated using an in-house solution code(PowerCFD), which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The detailed droplet behavior was obtained under various conditions for droplets with different initial shapes, contact angles and surface tension forces(or Bond number). The mechanism of droplet transport was examined using the numerical results on the droplet shapes.

A New Concept to Transport a Droplet on Horizontal Hydrophilic/Hydrophobic Surfaces (친수성/소수성 수평 표면상에서의 액적이송에 관한 새로운 개념)

  • Myong, Hyon Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.263-270
    • /
    • 2014
  • A fluid transport technique is a key issue for the development of microfluidic systems. In this paper, a new concept for transporting a droplet without external power sources is proposed and verified numerically. The proposed device is a heterogeneous surface which has both hydrophilic and hydrophobic horizontal surfaces. The numerical simulation to demonstrate the new concept is conducted by an in-house solution code (PowerCFD) which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. It is found that the proposed concept for droplet transport shows superior performance for droplet transport in microfluidic systems.

Numerical Study on Slanted Cubical-Cavity Natural Convection (경사진 3차원 캐비티내 자연대류현상에 관한 수치적 연구)

  • Myong, Hyon-Kook;Kim, Jong-Eun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.722-728
    • /
    • 2006
  • Natural convection flows in a cubical air-filled slanted cavity that has one pair of opposing faces isothermal at different temperatures, $T_h\;and\;T_c$, respectively, the remaining four faces having a linear variation from $T_c\;toT_h$ are numerically simulated by a solution code (PowerCFD) using unstructured cell-centered method. Special attention is paid to three-dimensional flow and thermal characteristics according to a new orientation (diamond type) for the cubical-cavity benchmark problem in natural convection. Comparisons of the average Nusselt number at the cold face are made with experimental benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the laminar convection in a cubical air-filled slanted cavity with differentially heated walls.

Numerical Investigation on Heat Transfer Characteristics for Natural Convection Flows in a Doubly-Inclined Cubical-Cavity (이중으로 경사진 3차원 캐비티내 자연대류 열전달 특성에 관한 수치해석적 연구)

  • Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.435-442
    • /
    • 2009
  • Three-dimensional heat transfer characteristics for natural convection flows are numerically investigated in the doubly-inclined cubical-cavity according to the variation of a newly defined orientation angle �� of the hot wall surface from horizontal plane at moderate Rayleigh numbers. Numerical simulations of laminar flows are conducted in the range of Rayleigh numbers($10^4{\leq}Ra{\leq}10^5$) and $0^{\circ}{\leq}{\alpha}90^{circ}$ with a solution code(PowerCFD) employing unstructured cell-centered method. Comparisons of the average Nusselt number at the cold face are made with benchmark solutions and experimental results found in the literature. It is found that the average Nusselt number at the cold wall has a maximum value around the specified orientation ${\alpha}$ at each Rayleigh number. Special attention is also paid to three-dimensional thermal characteristics in natural convection according to new orientation angles at Ra��= $1{\times}10^5$, in order to investigate a new additional heat transfer characteristic found in the range of above Ra = $6{\times}10^4$.

NUMERICAL STUDY ON NATURAL CONVECTION IN A CUBICAL-CAVITY WITH A DIAMOND-TYPE ORIENTATION : Ra = $1{\times}10^5$ (다이아몬드형태의 3차원 캐비티내 자연대류 유동에 관한 수치적 연구 : Ra = $1{\times}105$)

  • Kim, J.E.;Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.83-88
    • /
    • 2006
  • Natural convection flows in a cubical air-filled cavity that has one pair of opposing faces isothermal at different temperatures, $T_h\;and\;T_c$ respectively, the remaining four faces having a linear variation from $T_c\;to\;T_h$ are numerically simulated by a solution code(PowerCFD) using unstructured cell-centered method. An extension to a previously published work, special attention of this work is paid to three-dimensional flow and thermal characteristics in nature convection according to new orientation at Ra= $1{\times}105$. Comparisons of the average Nusselt number at the cold face are made with benchmark solutions and experimental results found in the literature. It is demonstrated that the average Nusselt number on the cold face has a maximum value around the diamond-type inclination angle of $43.2^{\circ}\;at\;Ra=1{\times}105$. We also report the effect of new orientation on the type of flow and temperature structure in a cubical-cavity.

  • PDF