• Title/Summary/Keyword: 비정렬

Search Result 641, Processing Time 0.026 seconds

Numerical Study about Behavior of an Ejecting Projectile for Varying Initial Conditions (초기 조건 변화에 따른 사출 운동체의 거동에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.761-767
    • /
    • 2019
  • In the present study, analyses of initial behavior of an air-launched projectile for varying initial conditions are performed by coupling computational fluid dynamics and 6 degrees of freedom calculations. Accuracy of the present numerical methods is validated by comparing the present result with the measured data. Launching safety analyses are carried out for various ejecting conditions by considering weight of the projectile and magnitude of front and rear ejector forces as the major parameters of initial behavior of the projectile. A response surface of the projectile launching safety is obtained in the range of the major parameters. In all the conditions of zero rear ejector force, unsafe launching behavior is observed. As the weight of the projectile decreases, the initial launching behavior becomes more unsafe.

A Study on Magnetic State of Nonstoichiometric Substituted Ferrite Fe$_{}1.429$(Al$_{4-x}$ Ga$_{x}$)$_{0.286}$ Si$_{0.143}$ /O$_4$ Systme. (비화학량론적 치환형 페라이트 Fe$_{}1.429$(Al$_{4-x}$ Ga$_{x}$)$_{0.286}$ Si$_{0.143}$ /O$_4$계의 자기적 상태 연구)

  • Choi, Seung-Han
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.808-815
    • /
    • 1995
  • The magnetic states of nonstoichiometric substituted ferrite Fe$_{}1.429$(Al$_{4-x}$ Ga$_{x}$)$_{0.286}$ Si$_{0.143}$ /O$_4$ system have been investigated using Mossbauer spectroscopy and SQUID. The Mossbauer spectra at room temperature show well-defined two Zeeman patterns for x=0.2, superpositions of two Zeeman patterns and a doublet for x=0.4. The doublet peak seems to be originated from the superparamagnetic clusters. The system shows significant departures from the Neel's collinear model and seems to be the diluted ferrites. The Mossbauer spectra below R.T show various and complicated patterns, which can be explained by freezing of the superparamagnetic clusters. On cooling, magnetic states of the system may be various and multicritical, Resulting from SQUID measurements, there was an unexpected dip in magnetization curves below 50K. It was interpreted as an effect of spin canting including spin freezing or collective spin behavior.

  • PDF

Eulerian-based Numerical Modeling for Impingement Prediction of Supercooled Large Droplets (과냉각대형액적 충돌예측을 위한 오일러리안 기반 수치 모델링)

  • Jung, Sung-Ki;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.647-654
    • /
    • 2012
  • Supercooled large droplet issues in aircraft icing have been continually reported due to the important safety considerations. In order to simulate the impingement behavior of large droplets, a two-dimensional and compressible Navier-Stokes code was developed to determine the flow field around the test model. Also, the Eulerian-based droplet impingement model including a semi-empirical approach for the droplet-wall interaction process and droplet break-up was developed. In particular, the droplet-wall interactions were considered as numerical boundary conditions for the droplet impingement simulation in the supercooled large droplet conditions. Finally, the present results were compared with the experimental test data and the LEWICE results. The droplet impingement area and maximum collection efficiency values between present results and wind tunnel data were in good agreements. Otherwise, the inclination of collection efficiency of the present result is over-predicted than the wind tunnel data around a lower surface of the NACA 23012 airfoil.

Carbon tip growth by electron beam deposition (전자빔 조사에 의한 탄소상 탐침의 성장)

  • 김성현;최영진
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.144-149
    • /
    • 2003
  • Carbon tips were grown on Si cantilevers by applying an electron beam to them directly with Scanning Electron Microscope. A carbon tip was fabricated by aligning the electron beam directly down the vertical axis of Si cantilever and then irradiating a single spot on the cantilever for a proper time in the dominant atmosphere of residual gases generated by the oil of the diffusion pump. A number of control parameters for SEM, including exposure time, acceleration voltage, emission current, and beam probe current, were allowed to make various aspect ratio feature. The growth of carbon tips was not affected by the surface morphology of substrates. We could acquired the tip whose effective length is 0.5 $\mu\textrm{m}$, bottom diameter is 90 nm and cone half angle $3.5^{\circ}$ The growth technique of the high aspect ratio carbon tips on the tip-free cantilevers is available to reduce the complexities of fabricating sub-micron scale tips on the PZT thin film actuator integrated AFM cantilevers.

Selectively Grown ALGaAs/GaAs Multilayers and InGaAs/GaAs Quantum Wire Structures Grown by Low Pressure MOCVD (선택적 에피 성장법에 의한 GaAs/AIGaAs 다층구조 및 InGaAs/GaAs 양자세선의 성장 및 photoluminescence 연구)

  • 김성일;김영환
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.118-122
    • /
    • 2003
  • Using low pressure metalorganic chemical vapor deposition (MOCVD), we have developed selectively area epitaxy (SAE). Using the developed SAE technology, we have grown AlGaAs/GaAs multi layers and InGaAs/GaAs quantum wire structures on the selectively $SiO_2$ masked GaAs substrates. We have obtained triangular shaped AlGaAs/GaAs and InGaAs/GaAs structures with sharp tips and smooth sidewalls. To rod the optimum conditions, several growth parameters such as growth rate, V/III ratio, growth temperature, and direction of the opening stripes were investigated. The emission peak from quantum wires was observed at 975 nm. With increasing of temperature the emission intensity from side wall quantum wells decreased abruptly. But the intensity from Quantum wires decreased slowly compared to that of side wall quantum wells and it became even stronger from above 50 K.

Embedded Image Compression Scheme Using Rate-Distortion Optimized Block Coding of Wavelet Coefficients (웨이브렛 계수의 비트율-왜곡 최적화 기반 블록 부호화를 이용하는 임베디드 영상 압축 방법)

  • Yang, Chang Mo;Chung, Kwangsue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.11
    • /
    • pp.625-636
    • /
    • 2014
  • In this paper, we propose a new embedded image compression scheme which uses rate-distortion optimized block coding of wavelet coefficients. Unlike to previous works in which set-partition or block-partition is performed according to the magnitude of wavelet coefficients, the proposed scheme achieves rate-distortion optimization by sorting wavelet coefficients or blocks according to their expected rate-distortion slope. At the same time, it performs the optimized block-partition coding using the expected rate-distortion slope of blocks. The proposed scheme also uses various relationship of wavelet coefficients for the entropy coding. Experimental results demonstrate that the proposed image compression scheme provides better overall performance than the existing embedded coding schemes such as SPIHT and EBCOT, in which the PSNR gains of the proposed scheme are about 0.11~1.16dB and -0.18~0.52dB, respectively.

Analysis of the Interaction Between Hypersonic Free Stream and Side Jet Flow Using a DSMC Method (직접모사법을 이용한 극음속 대기 유동과 측면 제트의 상호 작용 해석)

  • Kim, Min-Gyu;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • The interaction between hypersonic free stream and side jet flow at high altitudes is investigated by using the direct simulation Monte Carlo (DSMC) method. In order to alleviate the difficulty associated with the large density difference between the free stream and the side jet flow and to simulate the two flows simultaneously, a weighting factor technique is applied. For validation, the corner flow over a pair of plates perpendicularly attached is calculated with and without a side jet, and the results are compared with experiment. For a more realistic configuration, the flow past a blunted cone cylinder shape is solved. The leeward or windward jet is injected into the free stream and the effect on the aerodynamic force and moment is observed at various flow angles. The lambda shock effect and the wake structure are studied in terms of the surface pressure differential. A higher interaction between the free stream and the side jet flow is observed when the side jet is injected in the windward direction.

Static Aeroelastic Analysis for Aircraft Wings using CFD/CST Coupling Methodology (전산유체/전산구조 연계 방법을 사용한 항공기날개의 정적 공탄성 해석)

  • Choi, Dong-Soo;Jun, Sang-Ook;Kim, Byung-Kon;Park, Soo-Hyun;Lee, Dong-Ho;Lee, Kyung-Tae;Jun, Seung-Moon;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.287-294
    • /
    • 2007
  • A static aeroelastic analysis for supersonic aircraft wing equipped with external store under the wing lower surface is performed using computational fluid dynamics (CFD) and computational structural technology(CST) coupling methodology. Two mapping algorithms, which are the pressure mapping algorithm and the displacement mapping algorithm, are used for CFD/CST coupling. A three-dimensional unstructured Euler code and finite element analysis program are used to calculate the flow properties and the structural displacements, respectively. The coupling procedure is repeated in an iterative manner until a specified convergence criterion is satisfied. Static aeroelastic analysis for a typical supersonic flight wing is performed and final converged wing configuration is obtained after several iterations.

큰 알루미늄 덩어리 증착(large aluminum cluster deposition)에 관한 분자동력학 시뮬레이션

  • 강정원;최기석;문원하;변기량;최재훈;김태원;이강환;강유석;황호정
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.168-168
    • /
    • 2000
  • Yamada 등의 덩어리 증착에 관한 연구 이후 낮은 기판 온도에서 결정성이 뛰어난 금속박막성장(thin film growth)을 얻을 수 있는 방법으로 최근 덩어리 증착(cluster depositon) 방법에 관하여 많은 연구들이 진행되어 덩어리 충돌이 원자 충돌인 경우와 큰 차이를 보이는 결과를 얻었으며, 덩어리 증착시 기판 내부에 점결함(point defect)이 발생되지 않는다는 중요한 결과를 얻었다. 금속 덩어리를 사용한 금속박막성장은 높은 박막성장속도와 뛰어난 구조 재배열 효과를 얻을 수 있으며 기판의 격자 손상을 감소시키기 때문에 향후 나노미터 소자 개발에 응용성이 클 것으로 예상된다. 그러나 금속 덩어리와 금속 표면사이의 상호작용에서 발생되는 기본적인 역학(mechanism)은 분명하게 알려져 있지 않다. 지금까지 알루미늄 덩어리의 원자구조와 특성에 관한 연구는 수행되어졌지만 (4,5), 알루미늄 덩어리 증착에 관한 연구는 수행되지 않았다. 본 연구에서는 13~177개로 이루어진 큰 알루미늄 덩어리들의 증착에 관하여 Md(molecular dynamics) 방법을 사용하여 연구하였다. MD 시뮬레이션을 사용하여 덩어리 증착시 기판 표면과의 충돌 초기에 나타나는 덩어리 내부 원자들의 상관충돌효과(correlated collisions effect)에 의하여 덩어리 크기에 따른 증착현상과 여러 물리적 현상들을 관찰하였다. 덩어리 총 에너지가 증가할수록 기판의 최고 온도는 증가하며, 덩어리 크기가 클수록 상관충돌효과가 커지기 때문에 덩어리의 총 에너지에 다른 최고 증가 비율은 적어졌다. 시간에 따른 비정렬 원자수(disordered atom number) 비교를 통하여 덩어리가 클수록 구조 재배열이 더 잘 이루어진다는 것을 알 수 있었고, 원자당 에너지가 클수록 덩어리 원자들이 기판 내부로 더 깊이 들어갔고, 덩어리 크기가 클수록 상관충돌효과로 인하여 덩어리 원자들이 기판 내부로 더 깊이 들어가는 것을 알 수 있었고, 덩어리 크기가 클수록 상관충돌효과는 커지고 더욱 부드러운 증착이 이루어졌으며, 무엇보다도 덩어리 증착시 표면에서 구조 재배열이 잘 이루어지는 특징을 살펴볼 수 있었다. 이러한 알루미늄 덩어리를 생성하여 증착할 수 있을 경우, 뛰어난 재배열 효과를 이용하여 품질이 향상된 반도체 소자를 제조할 수 있을 것으로 사료된다.

  • PDF

Verification of Effective Support Points of Stern Tube Bearing Using Nonlinear Elastic Multi-Support Bearing Elements (비선형 탄성 다점지지 베어링 요소를 이용한 선미관 베어링의 유효지지점 검증)

  • Choung, Joon-Mo;Choe, Ick-Heung;Kim, Kyu-Chang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.479-486
    • /
    • 2005
  • The final goal of shift alignment design is that the bearing reaction forces or mean pressures are within design boundaries for various service conditions of a ship. However, it is found that calculated bearing load can be substantially variable according to the locations of the effective support points of after sterntube bearing which are determined by simple calculation or assumption suggested by classification societies. A new analysis method for shaft alignment calculation is introduced in order to resolve these problems. Key concept of the new method is featured by adopting both nonlinear elastic and multi-support elements to simulate a bearing support Hertz contact theory is basically applied for nonlinear elastic stiffness calculation instead of the projected area method suggested by most of classification societies. Three loading conditions according to the bearing offset and the hydrodynamic moment and twelve models according to the locations of the effective support points of sterntube bearings are prepared to carry out quantitative verifications for an actual shafting system of 8000 TEU class container vessel. It is found that there is relatively large difference between assumed and calculated effective support points.