• Title/Summary/Keyword: 비점착성 토사

Search Result 15, Processing Time 0.031 seconds

Investigation of Reducing Characteristics for the Spreading of Dredging Soil and the Diffusion of Contaminant by Silt Protector Curtain through Three Dimensional Numerical Model Experiment (3차원 수치모형실험을 통한 오탁방지막의 오염물질 및 준설토 확산 저감특성 조사)

  • Hong, Nam-Seeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.78-85
    • /
    • 2010
  • This study investigates reducing characteristics for the spreading of dredged soil and the diffusion of contaminant by silt protector curtain through three dimensional numerical experiment. The numerical medel is modified by combining the sediment transport characteristics for cohesive sediment into the previously developed model. Several numerical experiments have been given in order to investigate the reducing effect of silt protector using two dimensional numerical channel model under various parameters such as upstream flow velocity, depth of silt curtain and the position of dumped materials. Through the evaluation of several simulation results, we knew that the careful design has to be given in the determination of depth and position of silt protector.

Characteristics of Sewage Flow in Sewer Pipes Deposited with Cohesive and Non-cohesive Solids (점착성 및 비점착성 고형물이 퇴적된 관로 내 하수흐름의 특성 조사)

  • Lee, Taehoon;Kang, Byongjun;Park, Kyoohong
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.153-159
    • /
    • 2020
  • In order to find out the condition of flow in sewer pipes, this study investigated the characteristics of tractive force of sewage flow estimated using actual measured values of water level, velocity, and flowrate in sewers located at uppermost portion in a treatment area during dry weather periods. When the scene of sewage flow was taken by CCTV after cohesive and non-cohesive solids (tofu and sand) were put on the sewer invert, it was found that the solids could be flushed without significant interruption. In sewer with slope of 0.00319, the frequency exceeding the minimum tractive force of sewage during a weekday was zero, while it was 10 per day with slope of 0.00603. During the week of the field observation, the event to exceed the minimum tractive force occurred once, suggesting that sewer odor would potentially increase. Maximum tractive force in sewer with steep slope was 2.9-3.1 N/㎡, but with gentle slope it decreased to 1.6-1.7N/㎡. It was also observed that the interval of time maintained below the criterion of minimum tractive force increased, during weekends compared to weekdays and for the sewage including non-cohesive particles which could enter combined sewers during a storm period. This study found that the sewer sediments formed by direct feces input into sewers, through sewer pipes which were designed meeting the standard sewer design criteria, could be flushed without staying as deposited solids state for a long time.

A Study on the estimation of the flow characteristics and the bottom shear stress in an annular flume (환형수조의 내부 흐름특성 및 바닥전단응력 산정에 대한 연구)

  • Yang, Su-Hyun;Im, Ik-Tae;Hwang, Kyu-Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.176-176
    • /
    • 2011
  • 환형수조는 점착성 퇴적물의 이송특성 연구를 위해 가장 선호되는 실험 장치로 알려져 있다. 과거 많은 연구자들은 퇴적물의 이송특성, 특히 침식/퇴적 특성 조사를 위해 주로 수로를 이용한 실험적 연구를 수행하였는데, 최초의 실험적 연구들은 주로 직선수조에서 수행되었다. 그러나 입자간의 응집이 중요한 역할을 하는 점착성 퇴적물의 경우에, 직선수조 끝단에서의 자유낙하 및 재순환 펌프의 날개에 의해 응집된 토사가 쉽게 분리될 수 있어 그 타당성이 의문시 되어 왔으며, 이러한 단점을 보완하기 위해 환형수조가 고안되었다. 환형수조는 수면과 접하여 회전하는 상부링의 마찰력에 의해 흐름이 생성되기 때문에 시간의 제약 없이 흐름조건을 동일하게 만들 수 있다는 큰 장점을 갖는다. 그러나 환형수조는 원주유속의 속도차이 및 원심력으로 인한 2차 순환류를 형성시켜 반경 방향(radial direction)에서의 바닥전단응력을 불균일하게 하는 단점을 갖는다. 이러한 2차 순환류와 바닥전단응력의 불균일을 저감시키기 위하여 환형수조의 몸체를 상부링의 회전 방향과 역방향으로 직접 회전시키는 방법이 채택되어져 왔다. 한편, 환형수조의 상부링과 몸체를 서로 역방향으로 동시에 회전시키는 양방향 회전(counter-rotation)의 적용을 위해서는 2차 순환류가 최소가 되며 바닥전단응력이 균일해지는 최적 회전속도비에 대한 분석은 필수적 사항이다. 이를 위하여, 상부링과 몸체의 회전속도에 따라 변화하는 수조내부의 흐름특성 및 평균바닥전단응력에 대한 연구가 선행되어야만 한다. 이에 본 연구에서는 전산유체역학을 이용하여 전북대에 설치된 환형수조의 상부링과 몸체의 회전속도에 따라 변화하는 수조내부에서의 흐름특성 및 바닥전단응력에 대한 분석이 수행되었다. 또한, 이를 기초로, 환형수조의 최적 회전속도비 산출을 위한 연구가 수행 중에 있다. 이러한 결과들은 추후 환형수조를 이용한 점착성 퇴적물의 침식/퇴적 등과 같은 이송특성 연구시, 퇴적물에 작용하는 흐름조건의 정밀산정을 위한 기초자료로 활용될 수 있을 것이다.

  • PDF

A Suggestion of Formulae to Calculate Sectional Tractive Force on the Slope of Cohesive River Bank and its Application (점착성 제방사면의 구간별 소류력 산정식 제안 및 적용)

  • Han, Man-Shin;Choi, Gye-Woon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.583-596
    • /
    • 2012
  • The revetment is a installed structure on the slope of river bank to protect against flowing. Through the design standards of domestic and overseas, the maximum tractive force is calculated and applied to the average concept on the slope of river bank. In the case of calculating the method of permissible tractive force on the slope of river bank, there is a need to consider soil sliding. In this study, suggested the tractive force formulae by section of adhesion that have 0 < ${\Phi}$ < $90^{\circ}$ slope of river bank and installed an open channel of length of 20 m and 2 m wide for calculating permissible tractive force and hydraulic model experimented with changing discharge. According to the results, the calculated permissible tractive force of section on the slope is the largest due to the significant effects of surface roughness of different revetment materials. In addition, the permissible tractive force increased in the presence of vegetation but has no the effect by vegetation density.

A study on heading failure mode for underground excavation in cohesionless soils (비점착성 지반의 지하공간 굴착면 파괴모드에 대한 연구)

  • Shin, Jong-Ho;Kwon, Oh-Yeob;Cho, Jae-Wan;Choi, Min-Gu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.197-207
    • /
    • 2005
  • Design analysis for underground spaces requires evaluating stability related to heading collapses. A failure mode is one of the critical factors in the conventional methods of stability evaluation. Identification of failure modes is, therefore, essential in securing safe construction. In this study failure modes at the tunnel heading in cohesionless soils are investigated using physical model tests for various tunnel depths and ground surface inclinations. Test results showed that the effect of depth and the inclination of ground surface on a failure mode are of significance. It is identified that, with an increase in depth, failure modes become localized in a region close to tunnel face. It is also known that an increase in the inclination of ground surface results in inclined an d wide failure modes. Numerical simulation of laboratory tests was performed, and shown that the numerical analysis is useful in identifying the heading failure modes, particularly for large underground spaces.

  • PDF

Sensitivity Analyses of Influencing Factors on Slope Stability (사면안정성 영향인자의 민감도 분석)

  • Park, Byung-Soo;Jun, Sang-Hyun;Cho, Kwang-Jun;Yoo, Nam-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.91-100
    • /
    • 2010
  • In this paper a sensitivity analysis about effects of influencing factors on the stability of soil cut and embankment slopes in field was performed. Slope stability analysis of slopes in field was carried out with dry, rainy and seismic conditions. As results of analyzing the sensitivity of factors for the dry and rainy conditions, effect of cohesion, internal friction angle and unit weight of soil on the stability of cut slope is more critical in the dry condition than in the rainy condition. However, their effects on the stability of embankment slope for both conditions are similar to each other. The horizontal seismic coefficient does also affect the stability within the similar range of values irrespective of dry or rainy conditions. Cohesion and internal friction angle are more dominant factors influencing the slope stability irrespective of dry or rainy conditions than unit weight of soil and the horizontal seismic coefficient.

An investigation on the ground collapse mechanism induced by cracks in a non-pressurized buried pipe through model tests (모형시험을 통한 비압력 지중관거 균열로 인한 지반함몰 메커니즘 연구)

  • Kim, Yong-Key;Nam, Kyu-Tae;Kim, Ho-Jong;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.235-253
    • /
    • 2018
  • Groundwater flow induced by cracks in a buried pipe causes ground loss in the vicinity of it which can lead to underground cavities and sinkhole problems. In this study, the ground collapse mechanism and the failure mode based on an aperture in the pipe located in cohesionless ground were investigated through a series of physical model studies. As the influence parameters, size of the crack, flow velocity in the pipe, groundwater level, ground cover depth and ground composition were adopted in order to examine how each of the parameters affected the behavior of the ground collapse. Influence of every experimental condition was evaluated by the final shape of ground failure (failure mode) and the amount of ground loss. According to the results, the failure mode appeared to be a 'Y' shape which featured a discontinuous change of the angle of erosion when a groundwater level was equal to the height of the ground depth. While in the case of a water table getting higher than the level of ground cover depth, the shape of the failure mode turned to be a 'V' shape that had a constant erosion angle. As the height of the ground depth increased, it was revealed that a mechanism where a vertically collapsed area which consisted of a width proportional to the ground height and a constant length occurred was repeated.

Hydraulic Characteristics of Fluid-Granule Mixed Flow in Embankment of Noncohesive Materials Due to Overflow (越流에 의한 非粘着性 堤體에서의 流體-固體 混合流의 水理特性)

  • Kim, Jin-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.661-669
    • /
    • 1997
  • This paper presents a theoretical analysis for a velocity profile of fluid-granule mixed flow and a sheet erosion of an embankment having noncohesive materials due to overflow. The velocity profile were obtained using the stress-strain relationships based on a grain-inertia regime and an erosion depth was obtained using dynamic Coulomb criterion. Experiments were performed to compare with theoretical values and fairly good agreements were found. Theoretical results on velocity profiles, which can be applied to any type of velocity profiles in a fluid-granule mixed flow, showed a considerable improvement for the existing theories on a debris flow. for a design purpose, formulas and figure diagrams for obtaining a velocity profile, an erosion depth, an overflow depth and a granular discharge were proposed for given values of a flood discharge, particle properties and embankment scale.

  • PDF

Mechanical Properties of Controlled Low Strength Materials with Marine Dredged Soil (해양준설토를 이용한 유동성 뒤채움재의 역학적 특성)

  • Kim, Ju-Deuk;Lee, Byung-Sik;Lee, Kwan-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.35-44
    • /
    • 2007
  • Plowable fill is generally a mixture of sand, fly ash, a small amount of cement and water. Sand is the major component of most flowable fill mixes. Marine dredged soil was adopted for flowable fill instead of fly ash. Natural sea sand and in-situ soil were used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The unconfined compression test necessary to sustain walkability as the fresh flowble fill hardens was determined and the strength at 3-days appeared to correlate well with the water-to-cement ratio. The strength parameters, like cohesion and internal friction angle, was determined along the curing time. The creep test for settlement potential was conducted. Also, potable falling weight deflectometer(PFWD) test has been carried out for elastic modulus of each controlled low strength materials(CLSM). The data presented show that marine dredged soil and in-situ soil can be successfully used in CLSM.

Shear Strength Characteristics of Artificial Soil Mixture with Pond Ash (매립석탄회가 혼합된 인공혼합토의 전단특성)

  • Kim, Kyoungo;Park, Seongwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.39-47
    • /
    • 2013
  • Recently, there have been various domestic construction activities related to the reclamation of the dredged soils to expand the land use. However, the reclaimed grounds made of the dredged soils cause various problems due to highly compressible and low shear strength nature. Particularly, this nature induces huge problems in case of the harbor facilities and road construction on the reclaimed sites. Furthermore, in the reclamation activities, the marine dredged soils are often used instead of the well sorted sand, which induces problems of compressibilities. Therefore, in this study, the mechanical characteristics of artificial soil mixture of kaolinite representing the marine dredged soils and the pond ash. A large consolidometer is designed and manufactured to produce the artificial soil mixture. To represent various mixing ratio between the fly ash and bottom ash in the pond ash, six samples with the same stress history are made with different mixing ratio among kaolinite, bottom ash and fly ash. Isotropically consolidated and undrained compression tests are performed to investigate the shear characteristics of soil mixtures. Based on the experimental results, as the components of mixed ash increase, the friction angle increase and the cohesion values decrease. Also, the porepressure parameters at failure, Af increase with the mixing components of the pond ash. The portion of bottom ash has more impact on the shear behavior than that of fly ash.