• 제목/요약/키워드: 비절삭상수

검색결과 3건 처리시간 0.017초

신경회로망을 이용한 채터 특성 및 안정영역 분석 (The Characteristics and Stability Boundary Analysis of Chatter using Neural Network)

  • 윤문철;김영국;김광희
    • 한국기계가공학회지
    • /
    • 제5권2호
    • /
    • pp.16-21
    • /
    • 2006
  • In this study, the analytic realization of chatter mechanism using radial basis neural network(RBNN) was introduced and compared with the conventional stability analysis. In this regard, the FFT and time series spectrum analysis was used as a criterion for the existence of chatter in end-milling force. The desired coded outputs of chatter was trained and finally converged to desired outputs. The output of the RBNN match well with the conventional desired stability lobe. Using this trained data, the stability boundary of the radial basis neural network was acquired using the contour plotting. As a result, the proposed stability lobe boundary using RBNN consists well with the conventional analytical boundary that is calculated in characteristic equation of transfer function in chatter dynamics. In this RBNN analysis, two input and three output parameters were used in this paper.

  • PDF

비절삭 저항상수에 따른 절삭력 예측 (Cutting Force Estimation Considering the Specific Cutting Force Constant)

  • 김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.75-82
    • /
    • 2019
  • Few studies have been conducted regarding theoretical turning force modelling while considering cutting constant. In this paper, a new cutting force modelling technique was suggested which considers the specific cutting force coefficients for turning. The specific cutting force is the multiplication of the cutting force coefficient and uncut chip thickness. This parameter was used for experimental modelling and prediction of theoretical cutting force. These coefficients, which can be obtained by fitting measured average forces in several conditions, were used for the formulation of three theoretical cutting forces for turning. The cutting force mechanism was verified in this research and its results were compared with each of the experimental and theoretical forces. The deviation of force was incurred by a small amount in this model and the predicted force considering feed rate, nose radius, and radial depth shows a physical behavior in main force, normal force, and feeding force, respectively. Therefore, this modelling technique can be used to effectively predict three turning forces with different tool geometries considering cutting force coefficients.

비절삭저항 상수 변화에 따른 절삭력 분석 (An analysis of cutting force according to specific force coefficients)

  • 김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.108-116
    • /
    • 2014
  • Considering the run-out effect and cutting force coefficients, the cutting force profile of half immersion end-milling was analyzed in detail. The effects of three specific cutting-force coefficients and three edge-force coefficients are verified. Through a detailed investigation, it is proved that the radial cutting force coefficients and are the major factors which increase the cutting forces Fx and Fy in end-milling. However, the axial cutting force coefficients have no influence on the force Fx and Fy changes in end-milling. Also, the analyzed end-milling force model shows good consistency with the actual measured force with regard to Fx and Fy. Thus, this model can be used for the prediction of the force history in end-milling with run-out, and it incurs a different force history with different start and exit immersion angles as well as holding effects.