• 제목/요약/키워드: 비재래 오일.가스

검색결과 4건 처리시간 0.022초

비재래 에너지자원 동향 (Trend of the Unconventional Energy Resources)

  • 조진동;김종헌;박관순
    • 자원환경지질
    • /
    • 제47권3호
    • /
    • pp.265-273
    • /
    • 2014
  • 비재래 자원은 상업적 개발을 위하여 높은 기술력과 많은 투자가 필요로 하는 자연자원이다. '비재래 자원' 용어는 물리적으로 낮은 투과성과 높은 탄화수소 점성도를 가지는 자연 오일저유소로부터 석유와 가스를 분리 생산을 요하는 특수한 탄화수소를 언급한다. 중국과 인도와 같은 개도국이 선진국으로 도입을 위해 필요한 에너지 사용의 급등 및 자원 고갈로 인해서 최근에 비재래 에너지 자원이 각광을 받고 있다. 따라서 비재래 에너지 자원의 상황과 'Web of science' 데이터베이스에 등록된 학술문헌지에 발표된 비재래 오일 가스 연구 활동(2000~2012)을 분석한 결과, 가스 402편과 오일 1,581편을 확인하였다. 국가 별 특성을 보면 미국은 비재래 가스분야, 캐나다는 비재래 오일분야 및 중국은 석탄 메탄가스 부문에서 강세를 보여주고 있다.

비재래형 에너지 고부가화 공정 기술 (Non Conventional Energy Upgrading Process Technology)

  • 김용헌;배지한
    • 공업화학
    • /
    • 제24권1호
    • /
    • pp.10-17
    • /
    • 2013
  • 중질탄화수소를 부가가치가 높은 경질탄화수소로 전환하는 업그레이딩 공정은 기존 정유공정에서 사용되고 있는 기술이다. 최근 석유자원의 한계로 비재래형 에너지(Non conventional energy)기술 개발의 중요성이 증가하고 되었고, 그 생산기술이 점차 상용화되어 기존 정유제품의 수요를 대체하고 있다. 향후 자원 부국과의 경쟁입지를 확보하기 위해서는 이러한 비재래형 에너지를 이용하기 위한 기술개발이 매우 중요하다. 대표적인 비재래형 에너지로는 오일샌드 (oil sands), 초중질유(extra heavy oil), 셰일가스(shale gas) 등이 있으며, 이 중 오일샌드 및 초중질유는 원유를 대체할 수 있는 비재래형 에너지원으로, 이들 이용기술은 캐나다 및 베네수엘라에서 상업적으로 개발되었다. 특히, 비튜멘 (bitumen) 및 GTL (Gas-To-Liquid) 합성공정의 중간산물인 FT (Fischer-Tropsch) wax는 업그레이딩(upgrading) 혹은 정제 (refining) 공정을 거쳐 가솔린이나 디젤유과 같은 고부가가치 정유 제품으로 생산된다. 이러한 업그레이딩 공정은 기존 원유 정제공정에서 이루어지고 있는 저급 중질탄화수소의 고도화 공정에 해당되는 기술이다. 비튜멘은 상온에서도 유동성이 없는 고점성의 초중질유와 비슷한 물성을 가진 물질로 기존 정유플랜트에서 처리하기 어려운 성분들이 다량 포함되어 있어, 원유 정제 기술의 고도화 설비와는 차별화된 기술의 적용이 필요하다. 또한, 생산, 수송 및 판매에 많은 비용과 기술적 제한 사항이 존재하며, 특히 비튜멘 생산과 고부가화 합성원유 생산을 위해 필요한 많은 에너지 비용과 플랜트 건설 투자비용은 오일샌드 개발의 큰 장애 요소로 작용되고 있다. 그러나 비튜멘의 생산, 수송, 고부가화 부문의 기술적, 사업적 발전 방향에 대한 연구, 검토가 기존 정유사업 고도화와 연계하여 활발히 진행 중에 있다. 오일샌드의 경우, 비튜멘의 일반적인 시장 판매 방법으로 단순히 희석제와 혼합하여 판매하는 방법이 있고, 업그레이딩을 통하여 합성원유의 형태로 판매하는 방법이 있다. 전자의 경우엔 원유가 대비 희석 비튜멘의 가격차가 커지고, 희석제의 가격이 올라가는 시장상황에서는 불리하다. 또한, 플랜트의 용량이 증가하면, 더욱 경제성이 없어진다. 그래서 처리용량에 맞는 업그레이딩의 적용은 이러한 시장 환경 변화에 대한 대비라 할 수 있다. 이러한 비재래 에너지원의 고부가화(upgrading) 기술에 대하여 알아보고자 한다.

실험실 규모의 고정층 가스화기에서 오일샌드 코크스의 수증기 가스화 특성 (Steam Gasification Characteristics of Oil Sand Coke in a Lab-Scale Fixed Bed Gasifier)

  • 윤상준;최영찬;이시훈;이재구
    • 공업화학
    • /
    • 제20권1호
    • /
    • pp.62-66
    • /
    • 2009
  • 지속적인 연료비용의 상승 및 가채매장량의 한계로 인하여 비재래형 연료 및 공정 부산물의 연료적 가치에 대한 관심이 증가하고 있으며, 그중 대표적인 것이 오일샌드 및 이의 부산물인 코크스의 이용기술이다. 본 연구에서는 오일샌드 코킹 공정에서 발생되는 오일샌드 코크스의 에너지화 이용을 위하여 실험실 규모의 고정층 가스화 시스템을 이용한 연구를 수행하였다. TGA를 이용하여 오일샌드 역청 및 코크스의 연소 반응특성을 확인하였으며, 실험실 규모의 가스 화기를 이용하여 산소/연료 비율, 온도 및 스팀주입량에 따른 가스화 후 생성되는 합성가스의 특성을 파악하였다. 오일샌드 코크스는 높은 탄소함량, 발열량 및 황 함량 특성을 보인 반면 낮은 회재함량과 반응성의 특성을 보였다. 오일샌드 코크스 가스화의 경우 일반적으로 온도, 스팀주입량 증가 및 산소주입량 감소에 따라 $H_2$ 생성량은 증가하였으며 $CO_2$ 생성량은 감소하는 경향을 보였다. 합성가스 발열량은 $2100kcal/Nm^3$ 정도의 값을 보여 오일샌드 코크스의 수소원료 및 연료로서 이용 가능성을 확인하였다.

캐나다 아사바스카 오일샌드 지질특성 (Geology of Athabasca Oil Sands in Canada)

  • 권이균
    • 한국석유지질학회지
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 2008
  • 오일샌드는 비재래형(unconventional) 석유자원의 하나로서 비투멘(bitumen), 물, 점토, 모래의 혼합물이다. 오일샌드 비투멘은 API 비중이 $8-14^{\circ}$이고 점도가 10,000 cP 이상인, 매우 무겁고 점성이 큰 탄화수소 자원으로서 일반적으로 지표나 천부퇴적층에서 유동성을 갖지 않는다. 오일샌드 비투멘은 주로 캐나다 앨버타주와 사스캐추완주에 분포하고 있으며, 캐나다에만 원시부존량이 1조 7천억 배럴, 확인매장량이 1천 7백억 배럴에 달한다. 대부분은 앨버타주 포트 멕머레이(Fort McMurray) 인근의 아사바스카(Athabasca), 콜드레이크(Cold Lake), 피스리버(Peace River) 지역에 매장되어 있다. 캐나다 오일샌드 저류지층은 아사바스카 지역의 멕머레이층(McMurray Fm)과 클리어워터층(Clearwater Fm), 콜드레이크 지역의 멕머레이층(McMurray Fm), 클리어워터층(Clearwater Fm), 그랜드래피드층(Grand Rapid Fm), 피스리버 지역의 블루스카이층(Bluesky Fm)과 게팅층(Gething Fm)이다. 이들 지층은 하부 백악기 지층으로서 중생대 초-중기에 발생한 북미판과 태평양판의 충돌과 그로 인한 대륙전면분지(foreland basin)의 형성과정에서 퇴적되었다. 분지의 기반암은 복잡한 지형을 갖는 고생대 탄산염암이며, 그 위에 북미대륙 북쪽의 보레알해(Boreal Sea)로부터 현재의 북미대륙 서부를 남북으로 관통하는 전기백악기내해로(Early Cretaceous Interior Seaway)를 따라 해침이 발생하면서 오일샌드 저류지층이 형성되었다. 세 개의 주요 오일샌드 분포지역 가운데 80% 이상의 오일샌드를 매장하고 있는 아사바스카 지역의 저류지층인 멕머레이층과 크리어워터층의 최하부층원인 와비스코 층원(Wabiskaw Mbr)은 전기 백악기 시기의 해침층서를 잘 반영하고 있다. 멕머레이층 하부에는 하성기원의 퇴적층이 발달하고, 상부로 가면서 점차로 조석기원의 천해 퇴적층이 우세해지며, 와비스코 층원에 와서는 의해 세립질 퇴적층이 광역적으로 분포한다. 이러한 해침기원의 상향 세립화 경향은 아사바스카 오일샌드 부존지역에서 일반적으로 관찰된다. 오일샌드 부존지층은 일반적으로 불균질 저류층이며, 주요 저류층은 하성퇴적층이나 에스츄어리(estuary) 기원의 퇴적층에 발달한 하도-포인트 바 복합체(channel-pont bar complex)이다. 이러한 하도-포인트바 복합체는 범람원 및 조수평원 세립질 퇴적층이나 만-충진(bay-fill) 퇴적층과 함께 멕머레이층을 형성한다. 멕머레이층 상부에 오는 와비스코 층원은 주로 외해 세립질 퇴적층으로 이루어져 있으나, 멕머레이층을 대규모로 침식하는 하도사암층이 지역적으로 발달하기도 한다. 캐나다에서 오일샌드는 주로 노천채굴(surface mining)과 심부열회수(in-situ thermal recovery) 방식으로 생산한다. 50 m 미만의 심도에 묻혀있는 오일샌드는 노천채굴 방식으로 회수하여 비투멘 추출(extraction)과 개질(upgrading)과정을 거쳐 합성원유(synthetic crude oil)로 생산된다. 반면에 150-450 m 심도에 묻혀있는 오일샌드는 주로 심부열회수 방식으로 비투멘을 회수하여 비교적 간단한 비투멘 블렌딩(blending)과정을 통해 유동성을 증가시켜 정유시설로 운반한다. 심부열회수 방식으로 오일샌드를 개발할 경우 주로 스팀주입중력법(SAGD: Steam Assisted Gravity Drainage)이나 주기적스팀강화법(CSS: Cyclic Steam Stimulation)이 사용된다. 이러한 방법들은 저류층에 스팀을 주입하여 저류층 내의 온도를 상승시킴으로써 비투멘의 유동성을 증가시켜 회수하는 기술을 사용한다. 따라서 오일샌드 저류층 내부의 스팀전파효율을 결정하는 저류지층의 주요 지질특성에 대한 이해가 선행되어야 효과적인 생산설계와 효율적인 생산을 수행할 수 있다. 오일샌드 생산에 영향을 미치는 저류층의 주요 지질특성에는 (1)비투멘 샌드층의 두께(pay) 및 연결성(connectivity), (2) 비투멘 함량, (3) 저류지역 지질구조, (4) 이질배플(mud baffle)이나 이질프러그(mud plug)의 분포, (5) 비투멘 샌드층에 협재하는 이질퇴적층의 두께 및 수평연장성(lateral continuity), (6) 수포화층(water-saturated sand)의 분포, (7) 가스포화층(gas-saturated sand)의 분포, (8) 포인트바의 성장방향성, (9) 속성층(diagenetic layer)의 분포, (10) 비투멘 샌드층의 조직특성 변화 등이 있다. 이러한 지질특성에 대한 고해상의 분석을 통해 보다 효과적인 오일샌드 개발이 달성될 수 있을 것이다.

  • PDF