• Title/Summary/Keyword: 비잡음 신호

Search Result 1,932, Processing Time 0.026 seconds

Verification, Variation and Application of Image SNR Distribution based upon Nonlinear Image Sensor Model using Simulation (시뮬레이션을 이용한 위성용 카메라 비선형 모델의 영상 신호-잡음비(Image SNR) 분포도 검증/특성 및 활용)

  • Myung, Hwan-Chun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.160-169
    • /
    • 2009
  • In the paper, the Image SNR(Signal-to-Noise) distribution proposed in [1] is reviewed from the three points of views: verification, variation, and application of the distribution. First, the proposed Image SNR distribution is verified through the noise-based simulation over a 2D image detector. Second, its variation over the linear/nonlinear gains shows that the noise-effect itself cannot explain every reason for the degraded Image SNR distribution. Third, through the application to optimal selection of the operation parameters, the usefulness of the proposed distribution is clarified.

  • PDF

The Effect of Advanced Modeling Iterative Reconstruction(ADMIRE) on the Quality of CT Images : Non-contrast CT in Chest (고급 모델링 반복 재구성법(ADMIRE)이 CT 영상의 화질에 미 치는 영향: 흉부 비조영 CT에서)

  • Lee, SangHeon;Lee, HyoYeong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.159-168
    • /
    • 2019
  • We examined the effect of Siemens ADMIRE (Advanced Modeled Iterative Reconstruction) on image quality by measuring changes in HU, noise, and SNR of background air, fat, muscle, and background signals on a chest CT scan. Experimental results show that as the ADMIRE Strength increases, the noise decreases and the signal increases, consequently the signal-to-noise ratio increases. ADMIRE can reduce noise by 28 ~ 61% compared to FBP, which is a conventional image reconstruction algorithm, and improves SNR by 16 ~ 100%.

Voice Activity Detection Algorithm using Fuzzy Membership Shifted C-means Clustering in Low SNR Environment (낮은 신호 대 잡음비 환경에서의 퍼지 소속도 천이 C-means 클러스터링을 이용한 음성구간 검출 알고리즘)

  • Lee, G.H.;Lee, Y.J.;Cho, J.H.;Kim, M.N.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.312-323
    • /
    • 2014
  • Voice activity detection is very important process that find voice activity from noisy speech signal for noise cancelling and speech enhancement. Over the past few years, many studies have been made on voice activity detection, it has poor performance for speech signal of sentence form in a low SNR environment. In this paper, it proposed new voice activity detection algorithm that has beginning VAD process using entropy and main VAD process using fuzzy membership shifted c-means clustering. We conduct an experiment in various SNR environment of white noise to evaluate performance of the proposed algorithm and confirmed good performance of the proposed algorithm.

Perceptual Filter Performance Improvement through Estimation of Stationary Static Characteristic Noise (정적 통계적 특성 잡음의 추정을 통한 지각 필터 성능 개선)

  • Seo Joungkook;Ryu Ilhyun;Cha Hyungtai
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.291-294
    • /
    • 2004
  • 본 논문에서는 잡음의 변화(variance)가 없는 정적인 통계적 특성(Stationary Static Characteristic)을 갖는 환경에서 잡음 추정을 통해 지각 필터의 성능을 개선하는 알고리즘을 제안한다. 제안된 잡음 추정 알고리즘은 입력되는 잡음에 열화 된 신호의 묵음 구간에서 추정된 잡음을 이용하여 입력되는 잡음의 SNR을 추정 후, 대역 별로 smoothing 상수 값으로 잡음 에너지를 제어하여 첨가된 잡음을 추정함으로써 초기 추정 잡음 보다 가까운 추정 잡음을 얻을 수 있게 된다. 이는 신호를 열화 시킨 잡음을 보다 정확한 추정을 제공함으로써, 지각 필터의 응답을 개선할 수 있고 더불어 잡음에 의해 열화 된 신호의 음질을 개선할 수 있다. 또한 저 대역에 영향을 미치는 잡음인 경우 다른 방법들과는 달리 음질의 개선이 뚜렷하다. 기존의 방식과 비교를 위해 다양한 신호 대 잡음 비(signal-to-noise ratio, SNR)에서 열화 된 오디오 신호를 입력으로 사용하였다. 입력 SNR이 5dB, 10dB, 15dB와 20dB의 각각의 경우에 대하여 SSNR(Segmental SNR)과 잡음 대 마스킹 비(Noise-to-mask ratio, NMR), 음질 테스트를 수행한 결과, 청감 테스트(Mean Opinion Score, MOS Test) 결과의 향상과 음질개선의 개선을 확인할 수 있었다.

  • PDF

Speech Enhancement using the Neural Network Filter (신경망필터를 이용한 음질향상)

  • 김종우;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.102-105
    • /
    • 2000
  • 본 논문에서는 잡음환경에서의 음성신호복원(Speech Enhancement) 시스템 구현을 목적으로 한다 이를 위한 적응필터로서 LMS(Least Mean Square)알고리즘 FIR필터를 제안한다. 또 정밀 필터로서 신경망 필터를 제안한다. 잡음환경에서의 음성신호 복원 시스템은 잡음에 의해 왜곡된 음성신호에서 잡음성분만을 제거함으로써 음성신호를 복원하는 시스템이다. 일반적으로 잡음은 시변특성과, 비선형적인 전달특성을 갖는다. 그러므로 파라미터가 고정된 필터로는 제어하기가 힘들다. 이러한 이유로 본 논문에서는 LMS알고리즘 적응필터를 적용한다. 신경망 필터는 오차 역전파 학습 알고리즘에 의해 오차를 최소화하는 방향으로 필터의 파라미터를 수정한다. 제안한 필터로 잡음환경에서의 음성신호복원 시스템을 구성하고, 실험을 통해 필터의 성능을 확인한다.

  • PDF

The Study for Noisy Speech Improvement with Noise Perception Pattern Suppression (잡음 신호의 지각 패턴 제어를 통한 음질 개선 알고리즘 개발에 관한 연구)

  • Kim Hunjoong;Cha Hyungtai
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.199-202
    • /
    • 2002
  • 본 논문에서는 사람의 청각 모델을 기반으로 잡음에 의해 손상된 음성 신호로부터 잡음 신호의 마스킹 특성과 신호에너지의 지각(知覺)을 나타내는 임계대역(critical band)에서의 잡음 에너지에 대한 지각 패턴인 noise excitation pattern을 이용한 잡음 에너지 차감과 잡음 추정 오차에 의한 변형된 음성신호 내의 순음(tonal) 성분과 비순음(non-tonal)성분의 보정을 통해 효과적인 음성 품질의 개선을 위한 연구를 하였다.

  • PDF

A Nonparametric Method for Random Signal Detection in Signal-Dependent Noise : Two-Sample Case (신호 의존성 잡음에서 확률 신호 검파를 위한 비모수 방법 : 두 표본을 쓰는 경우)

  • Kim, Chang-Bae;Song, Ik-Ho;Bae, Jin-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.374-378
    • /
    • 2003
  • The asymptotic performance of the two-sample locally optimum rank detector for random signals buried in signal-dependent noise and additive noise is consigered in this paper. It is shown that the locally optimum rank detector, a nonparametric detector, has reasonable asymptotic performance for a class of correlated random signals, compared with the locally optimum detector. It is noteworthy that the the two-sample locally optimum rank detector perform almost the same with the one-sample locally optimum rank detector.

Analysis of De-noising by Thresholding (문턱치에 따른 잡음제거 분석)

  • Seo, Jung-Ick;Park, Eun-kyoo
    • Journal of the Korea society of information convergence
    • /
    • v.6 no.2
    • /
    • pp.45-49
    • /
    • 2013
  • Electrocardiogram(ECG) signal noise as well as conducting other bio-signal measurement were generated. It was intened to enhance the accuracy of cadiac disease diagnosis with removing signal white-noise. Sampling signal was made with generating white-noise. The noise were removed using wavelet transforms and thresholding. Removed noise were compared numerical using SNR(signal to noise ratio). The results compared SNR showed that SURE method was 5.931, 4.9301 in 3, 5dB noise, uninversal was 3.6590, 1.9698 in 7, 9dB noise. De-noising by Thresholding removed noise effectively. ECG signal is expected to improve the accuracy of cadiac desease dianosis.

  • PDF

De-Noising of Electroretinogram Signal Using Wavelet Transforms (웨이브렛 변환을 이용한 망막전도 신호의 잡음제거)

  • Seo, Jung-Ick;Park, Eun-Kyoo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.203-207
    • /
    • 2012
  • Purpose: Electroretinogram(ERG) signal noise as well as conducting other bio-signal measurement were generated. It was intened to enhance the accuracy of retinal-related diagnosis with removing signal noise. Methods: Sampling signal was made with generating 60 Hz noise and white noise. The noise were removed using wavelet transforms and bandpass filter. De-noising frequency was compared with Fourier transform spectrum. Removed noises were compared numerically using SNR(signal to noise ratio). Results: The result compared Fourier transform spectrum was showed that 60 Hz noise removed completely and most of white noise was removed by wavelet transforms. 60 Hz and the white noise remained using bandpass filters. The result compared SNR showed that wavelet transforms was 22.8638 and bandpass filter was 4.0961. Conclusions: Wavelet transform showed less signal distortion in removing noise. ERG signal is expected to improve the accuracy of retinal-related diagnosis.

Distance Measures Based Upon Adaptive Filtering For Robust Speech Recognition In Noise (잡음 환경하에서 음성 인식을 위한 적응필터링 거리 척도에 관한 연구)

  • 정원국;은종관
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.1E
    • /
    • pp.15-22
    • /
    • 1992
  • 잡음이 있는 환경하에서는 음성 인식의 성능이 현저하게 떨어지게 된다. 본 논문에서는 이렇나 잡음의 영향에 강한 거리척도를 제안하고자 한다. 우리는 잡음이 더해진 음성신호의 특징벡터를 깨끗한 음성신호의 특징벡터가 FIR 시스템을 거쳐 변형된 것이라고 가정한다. 여기서 FIR 시스템은 잡음의 영 향을 모델링한 것이라고 할 수 있다. 미지의 FIR 시스템 계수잡음의 영향을 모델링한 것이라고 할 수 있다. 미지의 FIR 시스템계수들은 RLS 적응 알고리즘을 이용하여 구한다. 제안된 거리척도는 적응 여파 기의 예측 오차에 관한 식으로 표시되어진다. 여러 가지 적응 여파기의 구조중 단일 채널 일차 FIR 구 조가 가장 좋은 음성 인식 성능을 보이며, 이 경우 효과적인 거리척도 알고리즘을 구할 수 있다. 여러 가지 신호대 잡음비에 관하여 화자독립 격리단어 인식 실험을 DTW 알고리즘을 이용하여 수행하여 본 결과 제안된 거리척도가 거의 모든 신호대 잡음비에 대하여 우수한 성능을 보였다.

  • PDF