• Title/Summary/Keyword: 비이진 터보부호

Search Result 61, Processing Time 0.022 seconds

Cooperative Diversity Performance Using Duo-Binary Turbo Codes (Duo-Binary 터보 부호를 이용한 협동 다이버시티 성능 분석)

  • Yeo, Sung-Moon;Kim, Soo-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.38-45
    • /
    • 2009
  • In this paper, we propose an efficient cooperative diversity technique, which partition the codewords of each mobile and transmit portions of each codeword through independent fading channels using duo-binary turbo codes. A coded diversity technique can achieve high cooperative diversity gain by decoding and transmitting of the re-encoded signal, while this can also cause high performance degradation due to failure of the decoding. In this paper, we introduce various coded diversity technique using duo-binary turbo codes which are defined as channel coding schemes in the IEEE WiMax specification, and also demonstrate performance simulation results with the analysis. We also propose a cooperative diversity technique using rate-compatible duo-binary turbo codes, where user terminals with different parity symbols cooperate each other. Simulation results investigated in this paper reveal that the proposed scheme show high diversity gain at a reasonal SNR range.

Performance Analysis of CZZ Codes Using Degree-2 Polynomial Interleavers for Fading Channels (페이딩 채널에서 2차 다항식 인터리버를 사용한 CZZ 부호의 성능 분석)

  • Yun, Jeong-Kook;Yoo, Chul-Hae;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1006-1013
    • /
    • 2008
  • CZZ (Concatenated Zigzag) Code is a class of fast encodable LDPC codes. In the case that LDPC codes including CZZ codes have short length, short cycles seriously affect the code performance. In this paper, we construct CZZ codes using various degree-2 polynomial interleavers which eliminate cycles of length 4 and through simulation, compare the performance of these CZZ codes and turbo codes in many different fading channels. Especially, quasi-static fading channel, block fading channel, uncorrelated fading channel, and correlated fading channel are considered. Since CZZ codes show similar performance as turbo codes, they can be used in the next generation wireless communication systems.

Propose and Performance Analysis of Turbo Coded New T-DMB System (터보부호화된 새로운 T-DMB 시스템 제안 및 성능 분석)

  • Kim, Hanjong
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.269-275
    • /
    • 2014
  • The DAB system was designed to provide CD quality audio and data services for fixed, portable and mobile applications with the required BER below $10^{-4}$. However for the T-DMB system with the video service of MPEG-4 stream, BER should go down $10^{-8}$ by adding FEC blocks which consist of the Reed-Solomon (RS) encoder/decoder and convolutional interleaver/deinterleaver. In this paper we propose two types of turbo coded T-DMB system without altering the puncturing procedure and puncturing vectors defined in the standard T-DMB system for compatibility. One(Type 1) can replace the existing RS code, convolutional interleaver and RCPC code by a turbo code and the other one (Type 2) can substitute the existing RCPC code by a turbo code. Simulation results show that two new turbo coded systems are able to yield considerable performance gain after just 2 iterations. Type 2 system is better than type 1 but the amount of performance improvement is small.

New stop criterion using the absolute mean value of LLR difference for Turbo Codes (LLR 차의 절대 평균값을 이용한 터보부호의 새로운 반복중단 알고리즘)

  • Shim ByoungSup;Lee Wanbum;Jeong DaeHo;Lim SoonJa;Kim TaeHyung;Kim HwanYong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.39-46
    • /
    • 2005
  • It is well known the fact that turbo codes has better performance as the number of iteration and the interleaver size increases in the AWGN channel environment. However, as the number of iteration and the interleaver size are increased, it is required much delay and computation for iterative decoding. Therefore, it is important to devise an efficient criterion to stop the iteration process and prevent unnecessary computations and decoding delay. In this paper, it proposes the efficient iterative decoding stop criterion using the absolute mean value of LLR difference. It is verifying that the proposal iterative decoding stop criterion can be reduced the average iterative decoding number compared to conventional schemes with a negligible degradation of the error performance.

A Two-Step Soft Output Viterbi Algorithm with Algebraic Structure (대수적 구조를 가진 2단 연판정 출력 비터비 알고리듬)

  • 김우태;배상재;주언경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.1983-1989
    • /
    • 2001
  • A new two-step soft output Viterbi algorithm (SOVA) for turbo decoder is proposed and analyzed in 7his paper. Due to the algebraic structure of the proposed algorithm, slate and branch metrics can be obtained wish parallel processing using matrix arithmetic. As a result, the number of multiplications to calculate state metrics of each stage and total memory size can be decreased tremendously. Therefore, it can be expected that the proposed algebraic two-step SOVA is suitable for applications in which low computational complexity and memory size are essential.

  • PDF

Analysis Third-dimension Turbo Code for DVB-RCS Next Generation (DVB-RCS Next Generation을 위한 Third-dimension Turbo Code 분석)

  • Park, Tae-Doo;Kim, Min-Hyuk;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.279-285
    • /
    • 2011
  • The next generation wireless communication systems are required high BER performance better than present performance. Double binary Turbo code have error floor at high SNR, so it cannot be used in next generation wireless communication system. Therefore, many methods are proposed for overcome error floor at DVB-RCS NG(next generation). In this paper, we analysis structure of third-dimension Turbo code(3D-turbo code). 3D-Turbo code overcomes error flow by additive post-encoder in conventional DVB-RCS Turbo code. Performance of 3D-Turbo code is changed by post-encoder form, interleaving method, value of ${\lambda}$. So we are simulated by those parameter and proposed optimal form. By a result, performance of 3D-Turbo is better than conventional DVB-RCS Turbo code and it overcome error floor of conventional DVB-RCS Turbo code.

Performance Comparisons of Various Turbo Interleavers Adopted as a Standard (표준으로 채택된 여러 터보 인터리버의 성능비교)

  • 진익수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.646-651
    • /
    • 2003
  • In this paper, we investigate the performance comparisons of various turbo interleavers which are adopted as a standard such as IMT-2000 and satellite DVB(digital video broadcasting). The bit error rate performance is calculated by the fixed point computer simulations over Rayleigh fading channels. For a fair comparison, the simulation is performed on the basis of equal the interleaver size as we can. From the results, it is shown that the turbo interleaver in W-CDMA outperforms the turbo interleavers in CDMA2000 and satellite DVB. The performance gains are even larger as the interleaver size is increased.

Block Turbo Codes for High Order Modulation and Transmission Over a Fast Fading Environment (고차원변조 방식 및 고속 페이딩 전송 환경을 위한 블럭터보부호)

  • Jin, Xianggunag;Kim, Soo-Young;Kim, Won-Yong;Cho, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.420-425
    • /
    • 2012
  • A forward error correction (FEC) coding techniques is one of time diversity techniques with which the effect of channel impairments due to noise and fading are spreaded over independently, and thus the performance could be improved. Therefore, the performance of the FEC scheme can be maximized if we minimize the correlation of channel information across over a codeword. In this paper, we propose a block turbo code with the maximized time diversity effect which may be reduced due to utilization of high order modulation schemes and due to transmission over a comparatively fast fading environment. Especially, we propose a very simple formula to calculate the address of coded bit allocation, and thus we do not need any additional outer interleavers, i.e., inter-codeword interleavers. The simulation resuts investigated in this paper reveal that the proposed scheme can provide the performance gain of more than a few decibels compared to the conventional schemes.

Turbo Perallel Space-Time Processing System with LDPC Code in MIMO Channel for High-Speed Wireless Communications (MIMO 채널에서 고속 무선 통신을 위한 LDPC 부호를 갖는 터보 병렬 시공간 처리 시스템)

  • 조동균;박주남;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.923-929
    • /
    • 2003
  • Turbo processing have been known as methods close to Shannon limit in the aspect of wireless multi-input multi-output (MIMO) communications similarly to wireless single antenna communication. The iterative processing can maximize the mutual effect of coding and interference cancellation, but LDPC coding has not been used for turbo processing because of the inherent decoding process delay. This paper suggests a LDPC coded MIMO system with turbo parallel space-time (Turbo-PAST) processing for high-speed wireless communications and proposes a average soft-output syndrome (ASS) check scheme at low signal to noise ratio (SNR) for the Turbo-PAST system to decide the reliability of decoded frame. Simulation results show that the suggested system outperforms conventional system and the proposed ASS scheme effectively reduces the amount of turbo processing iterations without performance degradation from the point of average number of iterations.

Low Complexity Video Encoding Using Turbo Decoding Error Concealments for Sensor Network Application (센서네트워크상의 응용을 위한 터보 복호화 오류정정 기법을 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hyuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • In conventional video coding, the complexity of encoder is much higher than that of decoder. However, as more needs arises for extremely simple encoder in environments having constrained energy such as sensor network, much investigation has been carried out for eliminating motion prediction/compensation claiming most complexity and energy in encoder. The Wyner-Ziv coding, one of the representative schemes for the problem, reconstructs video at decoder by correcting noise on side information using channel coding technique such as turbo code. Since the encoder generates only parity bits without performing any type of processes extracting correlation information between frames, it has an extremely simple structure. However, turbo decoding errors occur in noisy side information. When there are high-motion or occlusion between frames, more turbo decoding errors appear in reconstructed frame and look like Salt & Pepper noise. This severely deteriorates subjective video quality even though such noise rarely occurs. In this paper, we propose a computationally extremely light encoder based on symbol-level Wyner-Ziv coding technique and a new corresponding decoder which, based on a decision whether a pixel has error or not, applies median filter selectively in order to minimize loss of texture detail from filtering. The proposed method claims extremely low encoder complexity and shows improvements both in subjective quality and PSNR. Our experiments have verified average PSNR gain of up to 0.8dB.