• Title/Summary/Keyword: 비이오매스로부터 탄화수소

Search Result 3, Processing Time 0.018 seconds

BTL Pilot Process using Fe-based F-T Catalyst (철계 촉매를 이용한 BTL 파일롯 공정 연구)

  • Chae, Ho-Jeong;Jeong, Soon-Yong;Kim, Chul-Ung;Jeong, Kwang-Eun;Koh, Jae-Cheon;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.804-806
    • /
    • 2010
  • Due to the depletion of fossil fuel, high oil price and global warming issue by green house gas such as CO2, clean fuel technologies using biomass, especially BTL (biomass to liquid) technology, have been greatly attracted. This paper has examined F-T catalyst and process which are two backbones of BTL technology. In addition, this paper introduces our BTL pilot plant using Fe based catalyst which has been developed recently in Korea.

  • PDF

A Study on the Fischer-Tropsch Synthesis for Production of Hydrocarbon from Syngas under Gas Phase and Supercritical Phase (가스 및 초임계반응하에서 합성가스로부터 탄화수소 제조를 위한 피서트롭스 반응에 관한 연구)

  • Kim, Chul-Ung;Jeong, Soon-Yong;Jeong, Kwang-Eun;Chae, Ho-Jeong;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Kim, Jung-Hyun;Han, Jeong-Sik;Jeong, Byung-Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.15-21
    • /
    • 2011
  • With petroleum reserves dwindling, interest has been increasing worldwide in Fischer-Tropsch synthesis (FT) as a method of producing synthetic liquid fuels and chemicals from coal, natural gas or biomass. In general, FT synthesis is operated through the gas phase fixed-bed reaction system. Recently, there are lots of study in supercritical fluid due to unique characteristics such as the quick diffusion of reactant gas, effective removal of reaction heat, and the in-situ extraction of high molecular weight hydrocarbon, such as wax. In this study, our major aim is to obtain a deeper insight into the effect of the type of support on the reaction performance over a supported cobalt catalyst in a fixed bed reactor.

Effect of Catalyst Type and Reaction Medium on Fischer-Tropsch Synthesis for Production of Hydrocarbon from Syngas (합성가스로부터 탄화수소제조를 위한 피서트롭스 반응에 관한 촉매 종류 및 반응매체의 영향)

  • Kim, Chul-Ung;Jeong, Soon-Yong;Jeong, Kwang-Eun;Koh, Jae-Cheon;Chae, Ho-Jeong;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.658-663
    • /
    • 2010
  • With petroleum reserves dwindling, interest has been increasing worldwide in Fischer-Tropsch synthesis (FT) as a method of producing synthetic liquid fuels and chemicals from coal, natural gas or biomass. In general, FT synthesis is operated through the gas phase fixed-bed reaction system. Recently, there are lots of study in supercritical fluid due to unique characteristics such as the quick diffusion of reactant gas, effective removal of reaction heat, and the in-situ extraction of high molecular weight hydrocarbon, such as wax. In this study, our major aim is to obtain a deeper insight into the effect of the type of support on the reaction performance over a supported cobalt catalyst in a fixed bed reactor.

  • PDF