• 제목/요약/키워드: 비엇갈림격자

검색결과 18건 처리시간 0.022초

Helical Flow의 영향을 고려한 2차원 하상변동모의 (2-Dimensional Numerical Model for Sediment Transport considering the Impact of Helical Flow)

  • 김무종;이선민;최성욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.64-64
    • /
    • 2016
  • 하천은 인간에게 용수의 이용 및 하천호안의 휴식처로써의 이용을 통해 직접적인 영향을 주고, 하천구조물의 심미적 영향, 랜드마크로써의 역할을 통해 간접적인 영향을 준다. 또한, 하천은 하천생태계에 서식하는 동 식물에게 영향을 준다. 그러나 하천유사로 인해 통수능이 감소하고, 하천구조물 주변에 침식을 야기할 뿐만 아니라, 댐과 저수지에 유사의 퇴적으로 저수용량의 감소시킨다. 그러므로 이를 예측하는 것은 경제적, 환경적으로 중요하다. 하상변동의 모의를 위해 기존의 2차원 모형은 만곡흐름에서 유동의 helical flow를 고려하지 않아 예측이 부정확하였다. 본 연구에서는 천수방정식을 이용한 하상변동 수치모의에 helical flow의 영향을 고려하였다. 하천과 같은 천수영역에서의 흐름 및 하상변동을 해석하기 위하여 수심평균 된 Navier-Stokes equations인 천수방정식을 이용하였다. 지배방정식은 곡선 좌표계에서 유한체적법으로 차분하였고, 비엇갈림격자를 사용하였다. 지배방정식의 닫힘 문제를 해결하기위해 0-방정식 난류모형을 사용하였고, "time marching" 기법의 적용을 위해 계산단계분할 방법을 이용하였다. 비엇갈림격자의 사용으로 인해 검사체적의 면에서의 유속이 필요하여 pressure-velocity coupling을 사용하여 유속의 진동을 줄였다. 또한, 만곡부의 helical flow를 모의하기위해 helical flow intensity model을 도입하였다. 앞에서 계산한 흐름을 바탕으로 유사량 산정공식과 Exner 방정식을 이용하여 하상변동을 모의하였다. 흐름의 검증, helical flow의 영향에 대한 확인, 하상변동의 적용을 위해 선행연구의 실험이 사용되었다.

  • PDF

일반곡선 좌표계 사용시 대류항의 차분스킴에 의한 영향 평가 (Evaluation of the Influence of a Convective Term Caused by Various Finite Difference Schemes in General Curvature Coordinate)

  • 이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권3호
    • /
    • pp.94-101
    • /
    • 1994
  • To develope the new simulator for the analysis of fluid flow information, the influence of various convective difference schemes were evaluated. General curvilinear coordinate system with nonorthogonal grids was adopted for the successful analysis of various complex geometries. Computation results show that if we can not obtain full grid numbers within available computational environment, we need to use higher order finite difference schemes to keep the prediction accuracy.

  • PDF

비압축성 열유동 해석을 위한 비엇갈림 격자법에 대한 연구 (A Study of Non-staggered Grid Approach for Incompressible Heat and Fluid Flow Analysis)

  • 김종태;김상백;김희동;맹주성
    • 한국전산유체공학회지
    • /
    • 제7권1호
    • /
    • pp.10-19
    • /
    • 2002
  • The non-staggered(collocated) grid approach in which all the solution variables are located at the centers of control volumes is very popular for incompressible flow analyses because of its numerical efficiency on the curvilinear or unstructured grids. Rhie and Chow's paper is the first in using non-staggered grid method for SIMPLE algorithm, where pressure weighted interpolation was used to prevent decoupling of pressure and velocity. But it has been known that this non-staggered grid method has stability problems when pressure fields are nonlinear like in natural convection flows. Also Rhie-Chow scheme generates large numerical diffusion near curved walls. The cause of these unwanted problems is too large pressure damping term compared to the magnitude of face velocity. In this study the magnitude of pressure damping term of Rhie-Chow's method is limited to 1∼10% of face velocity to prevent physically unreasonable solutions. The wall pressure extrapolation which is necessary for cell-centered FVM is another source of numerical errors. Some methods are applied in a unstructured FV solver and analyzed in view of numerical accuracy. Here, two natural convection problems are solved to check the effect of the Rhie-Chow's method on numerical stability. And numerical diffusion from Rhie-Chow's method is studied by solving the inviscid flow around a circular cylinder.

과도 다차원 2상 유동 해석을 위한 비정렬 격자계에서의 Semi-Implicit 수치 해법 개발 (The Semi-Implicit Numerical Scheme for Transient Two-Phase Flows on Unstructured Grids)

  • 조형규;박익규;윤한영;김종태;정재준
    • 에너지공학
    • /
    • 제17권4호
    • /
    • pp.218-226
    • /
    • 2008
  • 가압 경수로의 주요 기기에서 발생할 수 있는 과도 2상 유동(Two-phase flow) 현상에 대한 해석을 수행하기 위해 원자로 기기 열수력 해석 코드를 개발 중에 있다. 개발중인 기기 열수력 해석 코드는 지배 방정식으로 Two-phase, three-field model을 사용하고 있으며, 복잡한 기하학적 형상의 원자로 기기를 모사하기 위해 비정렬 격자계(Unstructured grid)를 활용하고 있다. 수치해석 기법으로는, 원자로 계통 해석코드 REIAP5가 사용 중이며 대부분의 원자로 내 2상 유동 조건에서 안정적이며 정확하다고 알려진 Semi-implicit 방법을 적용하였다. 그러나 기존의 Semi-implicit 방법은 1차원, 엇갈림격자(Staggered grid)에 대해 개발되었기 때문에 이를 다차원, 비정렬, 비엇갈림 격자(Non-staggered grid)에 적용하기 위해 기존의 Semi-implicit 방법을 수정하였다. 본 논문에서는 수정된 Semi-implicit 방법을 소개하고 이를 이용해 수행한 예비 계산결과를 수록하였다.

축대칭 왕복엔진의 비정상 난류유동에 대한 수치해석 (A Numerical Simulation of Unsteady Axisymmetric Turbulent Flow in a Reciprocating Engine Including Port/Valve Assembly)

  • 조진행;유홍선;최영기
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.139-149
    • /
    • 1994
  • A numerical simulation of unsteady axisymmetric turbulent flow was performed for a reciprocating engine including port/valve assembly. The governing equations based on a nonorthogonal coordinate formulation with Cartesian velocity components were used and discretised by the finite volume method with non-staggered variable arrangements. The modified $\kappa-\xi$. turbulence model which included the effect of compressibility was used. The results of twodimensional transient calculation for the axisymmetric configuration were compared with the experimental data. Although slightly low rms velocity was predicted compared to the experimental data, predicted velocity distributions at the valve exit and in-cylinder region showed good agreements with the experimental data. The flow at the valve exit was separated at the same valve lift position with the experimental data. Two vortices incylinder region were generated during the initial intake process. The clockwise main vortex became strong and moved upward to the top wall. The counter-clockwise second vortex became weak and stick to the upper left corner of the cylinder. After middle intake process, new vortex adjacent to upper cylinder wall appeared by the piston motion and therefore, the in-cylinder flow was formed into three vortices. The cylinder pressure just before bottom dead center of piston was higher than inlet pressure and then the reverse flow occured at the valve exit. The in-cylinder flow characteristics were strongly dependent on piston motion, but insensitive to valve motion.

HCIB 법을 이용한 변형하는 평판 주위의 3차원 유동해석 (COMPUTATIONS ON FLOW FIELDS AROUND A 3D FLAPPING PLATE USING THE HYBRID CARTESIAN/IMMERSED BOUNDARY METHOD)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2007
  • A code is developed using the hybrid Cartesian/immersed boundary method and it is applied to simulate flows around a three-dimensional deforming body. A new criterion is suggested to distribute the immersed boundary nodes based on edges crossing a body boundary. Velocities are reconstructed at the immersed boundary nodes using the interpolation along a local normal line to the boundary. Reconstruction of the pressure at the immersed boundary node is avoided using the hybrid staggered/non-staggered grid method. The developed code is validated through comparisons with other experimental and numerical results for the velocity profiles around a circular cylinder under the forced in-line oscillation and the pressure coefficient distribution on a sphere. The code is applied to simulate the flow fields around a plate whose tail is periodically flapping under a translation. The effects of the velocity and acceleration due to the deformation on the periodic shedding of pairs of tip vortices are investigated.

과도상태 2상유동 해석을 위한 비정렬.비엇갈림 격자 SMAC 알고리즘 (AN EXTENSION OF THE SMAC ALGORITHM FOR THERMAL NON-EQUILIBRIUM TWO-PHASE FLOWS OVER UNSTRUCTURED NON-STAGGERED GRIDS)

  • 박익규;윤한영;조형규;김종태;정재준
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.51-61
    • /
    • 2008
  • The SMAC (Simplified Marker And Cell) algorithm is extended for an application to thermal non-equilibrium two-phase flows in light water nuclear reactors (LWRs). A two-fluid three-field model is adopted and a multi-dimensional unstructured grid is used for complicated geometries. The phase change and the time derivative terms appearing in the continuity equations are implemented implicitly in a pressure correction equation. The energy equations are decoupled from the momentum equations for faster convergence. The verification of the present numerical method was carried out against a set of test problems which includes the single and the two-phase flows. The results are also compared to those of the semi-implicit ICE method, where the energy equations are coupled with the momentum equation for pressure correction.

수정된 CIP방법을 이용한 벽면 충돌 후 액적의 퍼짐 현상에 대한 수치해석 연구 (Numerical Study on Droplet Spread Motion after impingement on the wall using improved CIP method)

  • 손소연;고권현;이성혁;유홍선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.109-114
    • /
    • 2010
  • Interface tracking of two phase is significant to analyze multi-phase phenomena. The VOF(Volume of Fluid) and level set are well known interface tracking method. However, they have limitations to solve compressible flow and incompressible flow at the same time. CIP(Cubic Interpolate Propagation) method is appropriate for considering compressible and incompressible flow at once by solving the governing equation which is divided up into advection and non-advection term. In this article, we analyze the droplet impingement according to various We number using improved CIP method which treats nonlinear term once more comparison with original CIP method. Furthermore, we compare spread radius after droplet impingement on the wall with the experimental data and original CIP original CIP method, and it reduces the mass conservation error which is generated in the numerical analysis comparison with original CIP method.

  • PDF

비엇갈림 격자계에서 CIP법을 이용한 캐비티내의 유동해석 (Analysis of the Flow in Square Cavity Using CIP Method in Non-staggered Grid Arrangement)

  • 이정희;강준;임도균;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1821-1826
    • /
    • 2003
  • In this study, we discuss CIP method, which can treat compressible/incompressible problem and multi-phase problem. We can apply this method to the general equations by using CCUP. In this paper, non-staggered grid arrangement and predictor-corrector method are used to enhance later development and the solution accuracy and convergence performance. To validate the numerical algorithm proposed in this paper, the two-dimensional unsteady flow in the driven cavity is simulated. The numerical results of this subject using the present algorithm are compared with other numerical results. As a result, it is prived that the present scheme gives stable and improved solutions, and the results even coarse grid are in good agreement with other result using a fine grid arrangement.

  • PDF

저레이놀즈수 $k-\epsilon$ 난류모델을 사용한 엇갈린 관군 주위에서의 유동 및 열전달에 관한 연구 (A Study on the Fluid Flow and Heat Transfer Around a Staggered Tube Bundles Using a Low-Reynolds $k-\epsilon$ Turbulence Model)

  • 김형수;최영기;유홍선
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.212-218
    • /
    • 1995
  • Turbulent flow and heat transfer characteristics around staggered tube bundles were studied using a non-orthogonal boundary fitted coordinate system and the low Reynolds .kappa. - .epsilon. turbulence model suggested by Lam and Bremhorst. The predicted flow characteristics for two tube pitches and tube arrangement showed good agreement with the experimental data except the strongly curved region. The predicted Nusselt number was compared with measurements obtained in the staggered rough bundles and it revealed the similar trend to measurements, but the location of the maximum and minimum heat transfer differed somewhat from the measurements.