• Title/Summary/Keyword: 비손실

Search Result 3,469, Processing Time 0.036 seconds

Comparative Analysis of Detection Methods for Food-borne Pathogens in Fresh-cut Agricultural Materials (신선 농산물내 식중독균 검출 방법의 비교 분석)

  • Jang, Hye-Jeong;Kim, Hye-Jeong;Park, Ji-in;Yu, Sun-Nyoung;Park, Bo-Bae;Ha, Gang-Ja;Ahn, Soon-Cheol;Kim, Dong-Seob
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.10-16
    • /
    • 2021
  • The consumption of fresh-cut agricultural materials is increasing due to increased public interest in health and the increase of single-person households. Most fresh-cut agricultural materials can be eaten without heating, thus easily exposing the consumer to food-borne pathogens. As a result, food-borne diseases are increasing worldwide. In the analysis of food-borne pathogens, it is important to detect the strains, but this is time consuming and laborious. Alternative detection methods that have been introduced, include polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), which is performed without prior culturing. Samples of fresh-cut agricultural materials, such as vegetables, were analyzed by the culture-based method. In 129 samples, non-pathogenic Escherichia coli (3.9%), Bacillus cereus (31.8%), Clostridium perfringens (5.4%), Yersinia enterocolitica (0.8%), and enterohemorrhagic E. coli (0.8%) were detected. Eight samples contaminated with bacteria were randomly selected, further analyzed by PCR-DGGE, and compared with the culture-based method. Two cases detected non-pathogenic E. coli by PCR-DGGE only, despite a lack of detection by the culture method. It was supposed there was possibility of sample loss during its 10-fold dilution for appropriate cultivation. In the detection of high-risk food-borne pathogens, it was found that the detection limit was lower in PCR-DGGE than in the culture-based method (10 CFU/g). This suggests that PCR-DGGE can be alternatively used to detect strains. On the other hand, low-risk food-borne pathogens seem to have higher detection limits in PCR-DGGE. Consequentially, this study contributes to the improvement of food-borne pathogen detection and the prevention of its related-diseases in fresh-cut agricultural materials.

Detection of flash drought using evaporative stress index in South Korea (증발스트레스지수를 활용한 국내 돌발가뭄 감지)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Mark, D. Svoboda;Brian, D. Wardlow
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.577-587
    • /
    • 2021
  • Drought is generally considered to be a natural disaster caused by accumulated water shortages over a long period of time, taking months or years and slowly occurring. However, climate change has led to rapid changes in weather and environmental factors that directly affect agriculture, and extreme weather conditions have led to an increase in the frequency of rapidly developing droughts within weeks to months. This phenomenon is defined as 'Flash Drought', which is caused by an increase in surface temperature over a relatively short period of time and abnormally low and rapidly decreasing soil moisture. The detection and analysis of flash drought is essential because it has a significant impact on agriculture and natural ecosystems, and its impacts are associated with agricultural drought impacts. In South Korea, there is no clear definition of flash drought, so the purpose of this study is to identify and analyze its characteristics. In this study, flash drought detection condition was presented based on the satellite-derived drought index Evaporative Stress Index (ESI) from 2014 to 2018. ESI is used as an early warning indicator for rapidly-occurring flash drought a short period of time due to its similar relationship with reduced soil moisture content, lack of precipitation, increased evaporative demand due to low humidity, high temperature, and strong winds. The flash droughts were analyzed using hydrometeorological characteristics by comparing Standardized Precipitation Index (SPI), soil moisture, maximum temperature, relative humidity, wind speed, and precipitation. The correlation was analyzed based on the 8 weeks prior to the occurrence of the flash drought, and in most cases, a high correlation of 0.8(-0.8) or higher(lower) was expressed for ESI and SPI, soil moisture, and maximum temperature.

Study on Bandwidth and Characteristic Impedance of CWP3DCS (Coplanar Waveguide Employing Periodic 3D Coupling Structures) for the Development of a Radio Communication FISoC (Fully-integrated System on Chip) Semiconductor Device (완전집적형 무선통신 SoC 반도체 소자 개발을 위한 주기적인 3차원 결합구조를 가지는 코프레너 선로에 대한 대역폭 및 임피던스 특성연구)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.179-190
    • /
    • 2022
  • In this study, we investigated the characteristic impedance and bandwidth of CPW3DCS (coplanar waveguide employing periodic 3D coupling structures), and examined its potential for the development of a marine radio communication FISoC (fully-integrated system on chip) semiconductor device. To extract bandwidth and characteristic impedance of the CPW3DC, we induced a measurement-based equation reflecting measured insertion loss, and compared the measured results of the propagation constant β and characteristic impedance with the measured ones. According to the results of the comparison, the calculated results show a good agreement with the measured ones. Concretely, the propagation constant β and characteristic impedance exhibited an maximum error of 3.9% and 6.4%, respectively. According to the results of this study, in a range of LT = 30 ~ 150 ㎛ for the length of periodic structures, the CPW3DC exhibited a passband characteristic of 121 GHz, and a very small dependency of characteristic impedance on frequency. We could realize a low impedance transmission line with a characteristic impedance lower than 20 Ω by using CPW3DCS with a line width of 20 ㎛, which was highly reduced, compared with a 3mm line width of conventional transmission line with the same impedance. The characteristic impedance was easily adjusted by changing LT. The above results indicate that the CPW3DC can be usefully used for the development of a wireless communication FISoC (fully-integrated system on chip) semiconductor device. This is the first report of a study on the bandwidth of the CPW3DC.

Apoptotic Effect of Proso Millet Grains on Human Breast Cancer MDA-MB-231Cells Is Exerted by Activation of BAK and BAX, and Mitochondrial Damage-mediated Caspase Cascade Activation (기장 종자 유래 추출물의 인간 유방암 MDA-MB-231 세포에 대한 세포독성에 관련된 미토콘드리아 손상-의존적 아폽토시스 유도 효과)

  • Do Youn Jun;Cho Rong Han;Young Ho Kim
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • To examine the antitumor effect of proso millet grains, whether proso millet grains exert apoptotic activity against human cancer cells was investigated. When the cytotoxicity of 80% ethanol (EtOH) extract of proso millet grains was tested against various cancer cells using MTT assay, more potent cytotoxicity was observed against human breast cancer MDA-MB-231 cells than against other cancer cells. When the EtOH extract was evaporated to dryness, dissolved in water, and then further fractionated by sequential extraction using four organic solvents (n-hexane, methylene chloride, ethyl acetate, and n-butanol), the BuOH fraction exhibited the highest cytotoxicity against MDA-MB-231 cells. Along with the cytotoxicity, TUNEL-positive apoptotic nucleosomal DNA fragmentation and several apoptotic responses including BAK/BAX activation, mitochondria membrane potential (Δψm) loss, mitochondrial cytochrome c release into the cytosol, activation of caspase-8/-9/-3, and degradation of poly (ADP-ribose) polymerase (PARP) were detected. However, human normal mammary epithelial MCF-10A cells exhibited a significantly lesser extent of sensitivity compared to malignant MDA-MB-231 cells. Irrespective of Fas-associated death domain (FADD)-deficiency or caspase-8-deficiency, human T acute lymphoblastic leukemia Jurkat cells displayed similar sensitivities to the cytotoxicity of BuOH fraction, excluding an involvement of extrinsic apoptotic mechanism in the apoptosis induction. These results demonstrate that the cytotoxicity of BuOH fraction from proso millet grains against human breast cancer MDA-MB-231 cells is attributable to intrinsic apoptotic cell death resulting from BAK/BAX activation, and subsequent mediation of mitochondrial damage-dependent activation of caspase cascade.

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

Project of Improving Good Agriculture Practice and Income by Intergrated Agricultural Farming (미얀마 우수농산물 재배기술 전수사업)

  • Lee, Young-Cheul;Choi, Dong-Yong
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.16 no.1
    • /
    • pp.193-206
    • /
    • 2014
  • The objectives of the project are to increase farmers' income through GAP and to reduce the loss of agricultural produce, for which the Korean partner takes a role of transferring needed technologies to the project site. To accomplish the project plan, it is set to implement the project with six components: construction of buildings, installation of agricultural facilities, establishment of demonstration farms, dispatching experts, conducting training program in Korea and provision of equipments. The Project Management Committee and the Project Implementation Team are consisted of Korean experts and senior officials from Department of Agriculture, Myanmar that managed the project systematically to ensure the success of the project. The process of the project are; the ceremony of laying the foundation and commencing the construction of training center in April, 2012. The Ribbon Cutting Ceremony for the completion of GAP Training Center was successfully held under PMC (MOAI, GAPI/ARDC) arrangement in SAl, Naypyitaw on June 17, 2012. The Chairman of GAPI, Dr. Sang Mu Lee, Director General U Kyaw Win of DOA, officials and staff members from Korea and Myanmar, teachers and students from SAl attended the ceremony. The team carried out an inspection and fixing donors' plates on donated project machineries, agro-equipments, vehicles, computers and printer, furniture, tools and so forth. Demonstration farm for paddy rice, fruits and vegetables was laid out in April, 2012. Twenty nine Korean rice varieties and many Korean vegetable varieties were introduced into GAP Project farm to check the suitability of the varieties under Myanmar growing conditions. Paddy was cultivated three times in DAR and twice in SAl. In June 2012, vinyl houses were started to be constructed for raising seedlings and finished in December 2012. Fruit orchard for mango, longan and dragon fruit was established in June, 2012. Vegetables were grown until successful harvest and the harvested produce was used for panel testing and distribution in January 2013. Machineries for postharvest handling systems were imported in November 2012. Setting the washing line for vegetables were finished and the system as run for testing in June 2013. New water tanks, pine lines, pump house and electricity were set up in October 2013.

Inhibitory Effect of Potato Sprouting Inhibitor Chlorpropham on Dry Rot (감자 맹아억제제 Chlorpropham의 마른썩음병 억제 효과)

  • Kyusuk Han;Byung Sup Kim;Sae Jin Hong;Nam Sook Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.165-171
    • /
    • 2023
  • Potato dry rot is one of the potato storage diseases caused by Fusarium species and is a representative pathological disorder that induced post-harvest loss during storage. Chlorpropham treatment for sprouting inhibition is mainly used for room temperature storage of potatoes for processing. In this study, the inhibitory effect of chlorpropham on Fusarium-induced dry rot of potato 'Dano'. To investigate the mycelial growth rate of the dry rot fungus (Fusarium solani Appel & Wollenw), mycelial growth was investigated in a chlorpropham (5.0, 50.4, 503.8, and 5,038 ppm) and prochloraz (0.1, 1.0, 10.0, and 100.0 ppm) medium containing F. oxysporum mycelia. Mycelia were more inhibited as the concentration of chlorpropham and prochloraz increased during incubation at 20℃, and the inhibition rate was 98.2% and 100% when treated with 503.8 ppm of chlorpropham and 10ppm of prochloraz in 14 days, respectively. Potato Dano tubers inoculated with F. oxysporum were dipped in chlorpropham (5.0, 50.4, and 503.8 ppm) and prochloraz (100 ppm) to investigate the effect of preventing dry rot during cold storage at 20℃ and 4℃ in vivo. The disease diameter of potatoes stored at room temperature (about 20℃) was reduced to 13.0 mm in the prochloraz 100 ppm teatment, and 10.7 mm in the chlorpropham 50.4 ppm treatment compared to 13.7 mm in the control tuber at 70 days of storage. The disease progression in all treatments including control was similar with no statistically significant difference at 4℃ air temperature. From the results of this study, it is considered that treatment with 50.4 ppm of chlorpropham after harvest will be useful for suppressing dry rot of stored potatoes.

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.

Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries (고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극)

  • Yun Jung Shin;Hyeon Seo Jeong;Eun Mi Kim;Tae Yun Kim;Sang Mun Jeong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.426-438
    • /
    • 2023
  • Lithium-sulfur batteries, recently attracting attention as next-generation batteries, have high energy density but are limited in application due to sulfur's insulating properties, shuttle phenomenon, and volume expansion. This study used an economical and simple vacuum filtration method to prepare a freestanding electrode without a binder and collector. Carbon nanotubes (CNTs) are used to improve the electrical conductivity of sulfur, where CNT also acts as both collector and conductor. In addition, metal oxides (MOx, M=Ni, Mg), which are easy to adsorb lithium polysulfide, are added to the CNT/S electrode to suppress the shuttle reaction in lithium-sulfur batteries, which is a result of suppressing the loss of active sulfur material due to the excellent adsorption of lithium polysulfide by metal oxides. The MOx@CNT/S electrode exhibited higher capacity characteristics and cycle stability than the CNT/S electrode without metal oxides. Among the MOx@CNT/S electrodes, the NiO@CNT/S electrode displayed a high discharge capacity of 780 mAh g-1 at 1 C and an extreme capacity decrease to 134 mAh g-1 after 200 cycles. Although the MgO@CNT/S electrode exhibited a low discharge rate of 544 mAh g-1 in the initial cycle, it showed good cycle stability with 90% of capacity retention up to 200 cycles. Further, to achieve high capacity and cycle stability, the Ni0.7Mg0.3O@CNT/S electrode, mixed with Ni:Mg in the ratio of 0.7:0.3, manifested an initial discharge rate of 755 mAh g-1 (1 C) and a capacity retention rate of more than 90% after 200 cycles. Therefore, applying binary metal oxides to CNT/S provides a freestanding electrode for developing economical and high-performance Li-S batteries, effectively improving lithium polysulfide's high capacity characteristics and dissolution.

Effects of Korean Goldenbell (Forsythia koreana) Leaf on the Growth, Body Color and Hepatopancreatic Structure of Giant Freshwater Prawn (Macrobrachium rosenbergii) (큰징거미새우(Macrobrachium rosenbergii)의 성장, 체색 및 간췌장 구조에 미치는 개나리(Forsythia koreana) 잎의 영향)

  • Dong Woo Kim;Jeong Hee Yoon;Ji Eun Ha;Jeong Hee Min;Bo Ryung Park;Joon Yeong Kwon
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.166-177
    • /
    • 2023
  • The giant freshwater prawn (Macrobrachium rosenbergii) suffers economic losses in aquaculture facilities due to problems such as poor body color and carapace weakness. While this species is farmed on an animal-based diet, in the wild it consumes a detritus diet with a high proportion of plant matter. The plant matter they consume in the wild is not only a source of basic nutrients, but also carotenoids, which are responsible for body color. Korean goldenbell (Forsythia koreana) is a flowering tree widely distributed in Korea, and its leaves contain carotenoids comparable to yellow carrots. In this study, we investigated the effects of feeding Forsythia leaves to M. rosenbergii on their body color and health. The experimental diets were 100% commercial feed (control), CON, 80% commercial feed plus 20% Forsythia leaf powder, FP, and 80% commercial feed plus 20% unprocessed Forsythia leaves, FL, and each diet was fed to juvenile prawn with an average weight of 1.1 ± 0.2 g for 10 weeks. In terms of body color, the CON prawn were consistently clear ivory in color, while the FP and FL prawn changed from blue to dark brown as the days of rearing progressed. Survival and growth were not significantly different between CON and FP or FL. Histological comparison of the hepatopancreas revealed that the vacuole size of B cells, the constituent cells of the hepatopancreatic tubule, was significantly larger in FP and FL compared to CON. The vacuoles of B cells are responsible for the absorption and digestion of nutrients, suggesting that the supply of Forsythia leaves may have had a positive effect on the health of the M. rosenbergii. The above results show that the use of Forsythia leaves in the aquaculture of M. rosenbergii can be expected to improve body color and health without inhibiting growth.