• 제목/요약/키워드: 비선형 함수

검색결과 1,562건 처리시간 0.024초

경사제 피복재의 누적피해를 이산시간 확률과정으로 고려한 조건기반 유지관리의 할인비용모형 (Discounted Cost Model of Condition-Based Maintenance Regarding Cumulative Damage of Armor Units of Rubble-Mound Breakwaters as a Discrete-Time Stochastic Process)

  • 이철응;박동헌
    • 한국해안·해양공학회논문집
    • /
    • 제29권2호
    • /
    • pp.109-120
    • /
    • 2017
  • 경사제 피복재를 예방적으로 유지관리할 수 있는 조건기반 할인비용모형을 제안하였다. 하중발생 사상을 이산시간 확률과정으로 고려하는 추계학적 누적 피해모형과 보수보강 비용에 대한 경제성 모형을 결합하여 수학적으로 유도하였다. 특히 본 논문에서 유도된 조건기반 유지관리의 할인비용모형은 시간에 따른 비용의 가치 뿐만 아니라 누적피해의 비선형성도 고려할 수 있다. 본 연구의 결과는 기존 모형들의 결과와 비교하여 만족스럽게 검증되었다. 또한 구조물의 중요도와 이자율 변화에 대한 민감도 분석도 수행하여, 구조물의 중요도가 높아질수록 예방적 보수보강의 최적시기는 빨라지나 이자율은 커질수록 반대의 경향이 나타난다는 것을 알았다. 한편 본 연구에서 유도된 추계학적 기대비용모형을 이용하여 여러 조건에 대하여 임의의 경사제 피복재 단면을 해석하였다. 표본경로기법을 적용하여 임의의 태풍 내습에 따른 경사제 피복재의 기대 누적피해수준을 예측하여 피해강도함수의 계수들을 추정할 수 있었다. 특히 하중발생 과정을 HPP(Homogeneous Poisson Process) 뿐만 아니라 DSPP(Doubly Stochastic Poisson Process)로도 해석하여 기대 누적피해수준에 미치는 하중발생의 불확실성에 대한 영향을 분석하여 하중발생사상을 이산시간 확률과정으로 고려해도 된다는 것을 확인하였다. 조건기반 할인비용모형의 해석 결과에 의하면 경사제 피복재의 설계조건에 따라 기대 누적피해수준의 거동특성이 크게 달라지고 이에 따라 예방적 보수보강을 수행하는 최적시기도 변한다는 것을 알 수 있었다. 마지막으로 파괴한계, 구조물의 중요도 그리고 이자율을 변화시키면서 예방적 유지관리를 가장 경제적으로 수행할 수 있는 최적시점과 피해규모를 결정할 수 있었다.

기계 학습 기반 분석을 위한 다변량 정형 데이터 처리 및 시각화 방법: Titanic 데이터셋 적용 사례 연구 (Multi-Variate Tabular Data Processing and Visualization Scheme for Machine Learning based Analysis: A Case Study using Titanic Dataset)

  • 성주형;권기원;박경원;송병철
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.121-130
    • /
    • 2024
  • 정보 통신 기술의 기하급수적인 발전에 따라 확보 가능한 데이터의 종류와 크기가 증가하고 있다. 이러한 대량의 데이터를 활용하기 위해, 통계 등 확보한 데이터를 분석하는 것이 중요하지만 다양화되고 복잡도가 증가한 데이터를 일반적인 방법으로 처리하는 것에는 명확한 한계가 있다. 한편, 연산 처리 능력 고도화 및 자동화 시스템에 대한 수요 증가에 따라 다양한 분야에 기계 학습을 적용하여 그동안 해결하지 못하였던 문제들을 풀고자 하는 시도가 증가하고 있다. 기계 학습 모델의 성능을 확보하기 위해서 모델의 입력에 사용되는 데이터를 가공하는 것과 해결하고자 하는 목적 함수에 따라 모델을 설계하는 것이 중요하다. 많은 연구를 통해 데이터의 종류 및 특성에 따라 데이터를 처리하는 방법이 제시되었으며, 그 방법에 따라 기계 학습의 성능에는 큰 차이가 나타난다. 그럼에도 불구하고, 데이터의 종류와 특성이 다양해짐에 따라 데이터 분석을 위하여 어떠한 데이터 처리 방법을 적용해야 하는지에 대한 어려움이 존재한다. 특히, 기계 학습을 이용하여 비선형적 문제를 해결하기 위해서는 다변량 데이터를 처리하는 것이 필수적이다. 본 논문에서는 다양한 형태의 변수를 포함하는 Kaggle의 Titanic 데이터셋을 이용하여 기계 학습 기반으로 데이터 분석을 수행하기 위한 다변량 정형 (tabular) 데이터 처리 방법에 대해 제시한다. 데이터 특성에 따른 통계 분석을 적용한 입력 변수 필터링, 데이터 정규화 등의 처리 방법을 제안하고, 데이터 시각화를 통해 데이터 구조를 분석한다. 마지막으로, 기계 학습 모델을 설계하고, 제안하는 다변량 데이터 처리를 적용하여 모델을 훈련시킨다. 그 이후, 훈련된 모델을 사용하여 탑승객의 생존 여부 예측 성능을 분석한다. 본 논문에서 제시하는 다변량 데이터 처리와 시각화를 적용하여 다양한 환경에서 기계 학습 기반 분석에 확장할 수 있을 것으로 기대한다.