• Title/Summary/Keyword: 비선형 지진응답해석

Search Result 224, Processing Time 0.023 seconds

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

Demand Strength Spectrums of Low-Rise Reinforced Concrete Buildings Consisted of Extremely Brittle, Shear and Flexural Failure Systems (극취성·전단·휨파괴형 수평저항시스템으로 구성된 저층 철근콘크리트 건물의 요구 내력 스펙트럼)

  • Lee, Kang-Seok;Kim, Jeong-Hee;Oh, Jae-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.529-537
    • /
    • 2007
  • The purpose of this study is to discuss how strength and ductility of each system in low-rise reinforced concrete buildings composed of extremely brittle, shear and flexural failure lateral-load resisting systems have influence on seismic capacities of the overall system, which is based on nonlinear seismic response analyses of single-degree-of-freedom structural systems. In order to simulate the triple lateral-load resisting system, structures are idealized as a parallel combination of two modified origin-oriented hysteretic models and a degrading trilinear hysteretic model that fail primarily in extremely brittle, shear and flexure, respectively. Stiffness properties of three models are varied in terms of story shear coefficients, and structures are subjected to various ground motion components. By analyzing these systems, interaction curves of demand strengths of the triple system for various levels of ductility factors are finally derived for practical purposes. The result indicates that demand strength levels derived can be used as a basic information for seismic evaluation and design criteria of low-rise reinforced concrete buildings having the triple lateral-load resisting system.

Seismic Performance Evaluation of Complex-Shaped Tall Buildings by Lateral Resisting Systems (횡력저항시스템에 따른 비정형 초고층건물 내진성능평가)

  • Youn, Wu-Seok;Lee, Dong-Hun;Cho, Chang-Hee;Kim, Eun-Seong;Lee, Dong-Chul;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.513-523
    • /
    • 2012
  • The objective of this research is to examine how the lateral resisting system of selected prototypes are affected by seismic zone effect and shape irregularity on its seismic performance. The lateral resisting systems are divided into the three types, diagrid, braced tube, and outrigger system. The prototype models were assumed to be located in LA, a high-seismicity region, and in Boston, a low-seismicity region. The shape irregularity was classified with rotated angle of plane, $0^{\circ}$, $1^{\circ}$, $2^{\circ}$. This study performed two parts of analyses, Linear Response and Non-Linear Response History(NLRH) analysis. The Linear Response analysis was used to check the displacement at the top and natural period of models. NLRH analysis was conducted to invest base shear and story drift ratio of buildings. As results, the displacement of roof and natural period of three structural systems increase as the building stiffness reduces due to the changes in rotation angle of the plane. Also, the base shear is diminished by the same reason. The result of NLRH, the story drift ratio, that was subject to Maximum Considered Earthquake(MCE) satisfied 0.045, a recommended limit according to Tall Building Initiative(TBI).

Fuzzy Control of Smart Base Isolation System using Genetic Algorithm (유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.37-46
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed and investigated. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively, of the smart base isolation system. A fuzzy logic controller (FLC) is used to modulate the MR damper because the FLC has an inherent robustness and ability to handle non linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. This method is efficient in improving local portions of chromosomes. Neuro fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find optimal fuzzy rules and the GA optimized FLC outperforms not only a passive control strategy but also a human designed FLC and a conventional semi active control algorithm.