• Title/Summary/Keyword: 비선형 위상

Search Result 483, Processing Time 0.03 seconds

Analysis of Interactions in Multiple Genes using IFSA(Independent Feature Subspace Analysis) (IFSA 알고리즘을 이용한 유전자 상호 관계 분석)

  • Kim, Hye-Jin;Choi, Seung-Jin;Bang, Sung-Yang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.157-165
    • /
    • 2006
  • The change of external/internal factors of the cell rquires specific biological functions to maintain life. Such functions encourage particular genes to jnteract/regulate each other in multiple ways. Accordingly, we applied a linear decomposition model IFSA, which derives hidden variables, called the 'expression mode' that corresponds to the functions. To interpret gene interaction/regulation, we used a cross-correlation method given an expression mode. Linear decomposition models such as principal component analysis (PCA) and independent component analysis (ICA) were shown to be useful in analyzing high dimensional DNA microarray data, compared to clustering methods. These methods assume that gene expression is controlled by a linear combination of uncorrelated/indepdendent latent variables. However these methods have some difficulty in grouping similar patterns which are slightly time-delayed or asymmetric since only exactly matched Patterns are considered. In order to overcome this, we employ the (IFSA) method of [1] to locate phase- and shut-invariant features. Membership scoring functions play an important role to classify genes since linear decomposition models basically aim at data reduction not but at grouping data. We address a new function essential to the IFSA method. In this paper we stress that IFSA is useful in grouping functionally-related genes in the presence of time-shift and expression phase variance. Ultimately, we propose a new approach to investigate the multiple interaction information of genes.

ALL-SKY OBSERVATION OF THE 2001 LEONID METEOR STORM: 1. METEOR MAGNITUDE DISTRIBUTION (전천 카메라를 이용한 2001 사자자리 유성우 관측: 1. 유성 등급 분포)

  • 김정한;정종균;김용하;원영인;천무영;임홍서
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.283-298
    • /
    • 2003
  • The 2001 Leonid meteor storm has been observed all over the world, and its most intense flux since the last few decades has caused great interest among both laymen and experts. Especially, its maximum hours occurred at dawn hours of Nov. 19 in the east Asia, during which moonless clear night at the Mt. Bohyun allowed us near perfect condition of observation. Observation was carried out in the period of 01:00∼05:40(KST), which include the predicted maximum hours, with all-sky camera installed for upper atmospheric airglow research. Tn this paper we analyze 68 all-sky images obtained in this period, which contain records of 172 meteors. Utilizing the zenith hourly rate(ZHR) of 3000 and magnitude distribution index of 2, which were reported to International Meteor Organization by visible observers in the east Asia, we estimate the limiting magnitude of about 3 for meteors detected in our all-sky images. We then derive magnitudes of 83 meteors with clear pixel brightness outlines among the initially detected 172 meteors by comparing with neighbor standard stars. Angular velocities of meteors needed for computing their passing times over an all-sky image are expressed with a simple formula of an angle between a meteor head and the Leonid radiant point. The derived magnitudes of 83 meteors are in the range of -6∼-1 magnitude, and its distribution shows a maximum new -3mag. The derived magnitudes are much smaller than the limiting magnitude inferred from the comparison with the result of naked-eye observations. The difference may be due to the characteristic difference between nearly instantaneuous naked-eye observations and CCD observations with a long exposure. We redetermine magnitudes of the meteors by adjusting a meteor lasting time to be consistent with the naked-eye observations. The relative distribution of the redetermined magnitudes, which has a maximum at 0 mag., resembles that of the magnitudes determined with the in-principle method. The relative distribution is quite different from ones that decrease monotonically with decreasing magnitudes for meteors(1∼6) sensitive to naked-eye observations. We conclude from the magnitude distribution of our all-sky observation that meteors brighter than about 0 mag., appeared more frequently during the 2001 Leonid maximum hours. The frequent appearance of bright meteors has significantly important implication for meteor research. We noted, however, considerably large uncertainties in magnitudes determined only by comparing standard stars due to the unknown lasting time of meteors and the non-linear sensitivity of all-sky camera.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: I. Spherical Wave Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : I. 구형파 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.391-401
    • /
    • 2004
  • 3D imaging systems using 2D phased arrays have a large number of active channels, compelling to use a very expensive and bulky beamforming hardware, and suffer from low volume rate because, in principle, at least one ultrasound transmit-receive event is necessary to construct each scanline. A high speed 3D imaging method using a cross array proposed previously to solve the above limitations can implement fast scanning and dynamic focusing in the lateral direction but suffer from low resolution except at the fixed transmit focusing along the elevational direction. To overcome these limitations, we propose a new real-time volumetric imaging method using a cross array based on the synthetic aperture technique. In the proposed method, ultrasound wave is transmitted successively using each elements of an 1D transmit array transducer, one at a time, which is placed along the elevational direction and for each firing, the returning pulse echoes are received using all elements of an 1D receive array transducer placed along the lateral direction. On receive, by employing the conventional dynamic focusing and synthetic aperture method along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. In addition, in the proposed method, a volume of interest consisting of any required number of slice images, can be constructed with the same number of transmit-receive steps as the total number of transmit array elements. Computer simulation results show that the proposed method can provide the same and greatly improved resolutions in the lateral and elevational directions, respectively, compared with the 3D imaging method using a cross array based on the conventional fixed focusing. In the accompanying paper, we will also propose a new real-time 3D imaging method using a cross array for improving transmit power and elevational spatial resolution, which uses linear wave fronts on transmit.