• Title/Summary/Keyword: 비선형 알고리즘

Search Result 1,468, Processing Time 0.03 seconds

Study on Quantized Learning for Machine Learning Equation in an Embedded System (임베디드 시스템에서의 양자화 기계학습을 위한 양자화 오차보상에 관한 연구)

  • Seok, Jinwuk;Kim, Jeong-Si
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.110-113
    • /
    • 2019
  • 본 논문에서는 임베디드 시스템에서의 양자화 기계학습을 수행할 경우 발생하는 양자화 오차를 효과적으로 보상하기 위한 방법론을 제안한다. 경사 도함수(Gradient)를 사용하는 기계학습이나 비선형 신호처리 알고리즘에서 양자화 오차는 경사 도함수의 조기 소산(Early Vanishing Gradient)을 야기하여 전체적인 알고리즘의 성능 하락을 가져온다. 이를 보상하기 위하여 경사 도함수의 최대 성분에 대하여 직교하는 방향의 보상 탐색 벡터를 유도하여 양자화 오차로 인한 성능 하락을 보상하도록 한다. 또한, 기존의 고정 학습률 대신, 내부 순환(Inner Loop) 없는 비선형 최적화 알고리즘에 기반한 적응형 학습률 결정 알고리즘을 제안한다. 실험결과 제안한 방식의 알고리즘을 비선형 최적화 문제에 적용할 시 양자화 오차로 인한 성능 하락을 최소화시킬 수 있음을 확인하였다.

  • PDF

An Efficient Extraction of Data Feature By Using Neural Networks of Hybrid Learning Algorithm (조합형 학습알고리즘의 신경망을 이용한 데이터의 효율적인 특징추출)

  • Jo, Yong-Hyeon;Yun, Jung-Hwan;Park, Yong-Su
    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.130-136
    • /
    • 2001
  • 본 논문에서는 새로운 학습알고리즘의 비선형 주요성분분석 신경망을 이용한 영상데이터의 효율적인 특징추출에 대하여 제안한다. 제안된 학습알고리즘에서는 최적해로 수렴하는 과정에서 발생할 수도 있는 진동을 억제하여 빠른 속도의 수렴이 가능하도록 하기 위해 모멘트를 이용하였고, 국소최적해를 만났을 때 이를 벗어난 전역최적해로의 수렴을 위한 새로운 연결가중치의 설정을 위하여 동적터널링을 이용함으로써 빠른 수렴속도로 전역최적해에 수렴되도록 학습시킬 수 있다. 제안된 학습알고리즘을 이용한 신경망을 256$\times$256 픽셀의 간암영상과 128$\times$128 픽셀의 얼굴영상을 대상으로 실험한 결과, 기울기하강의 학습알고리즘을 이용한 기존 비선형 주요성분분석 신경망보다 우수한 수렴성능과 특징추출성능이 있음을 확인 할 수 있었다.

  • PDF

A Learning Using GA Optimized Neural Networks (유전자 알고리즘 최적화 신경망을 이용한 학습)

  • YeoChang Yoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.27-29
    • /
    • 2008
  • 시스템 분석에 주로 사용하는 자료 중에는 비선형 자료와 시계열 등이 있다. 이들 자료는 그 함축적인 관계가 매우 복잡하여 전통적인 통계분석 도구로 분석하는데 어려움이 많다. 본 연구에서는 현실 세계에서 다양하게 나타나는 복잡성을 다루기 위하여 하이브리드 진화 신경망 모델링 접근 방법으로 자료를 모형화 하고 이를 통한 학습의 적합도를 살펴본다. 비선형 자료 등을 모형화하기 위한 학습은 역전파 신경망 기법을 이용한다. 학습의 효율을 높이기 의해서 격자감소 학습 알고리즘과 함께 이용하는 유전자 알고리즘은 네트워크 구조를 최적화 시킬 수 있는 초기가중값을 이용한 전역 최소값을 찾는데 이용한다. 학습 결과를 통해 제안된 하이브리드형 접근방법의 학습이 보다 효율적임을 살펴보기 위하여 유전자 알고리즘으로 최적화된 신경망 학습 알고리즘을 비선형 모의자료의 학습에 적용하여 보았다.

New Non-linear Inverse Quantization Algorithm and Hardware Architecture for Digital Audio Codecs (디지털 오디오 코덱을 위한 새로운 비선형 역 양자화 알고리즘과 하드웨어 구조)

  • Moon, Jong-Ha;Baek, Jae-Hyun;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.12-18
    • /
    • 2008
  • This paper This paper proposes a new inverse-quantization(IQ) table interpolation algorithm, specialized Digital Signal Processor(DSP) instructions and hardware architecture for digital audio codecs. Non-linear inverse quantization algorithm is representatively used in both MPEG-1 Layer-3 and MPEG-2/4 Advanced Audio Coding(AAC). The proposed instructions are optimized for the non-linear inverse quantization. The proposed algorithm can minimize operational complexity which reduces total computational load. Performance comparisons show a significant improvement of average error. The proposed instructions and hardware architecture can reduce 20% of the instruction counts and minimize computational loads of IQ algorithms effectively compared with existing IQ table interpolation algorithms. Proposed algorithm can implement commercial DSPs.

A Robust Digital Pre-Distortion Technique in Saturation Region for Non-linear Power Amplifier (비선형 전력 증폭기의 포화영역에서 강인한 디지털 전치왜곡 기법)

  • Hong, Soon-Il;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.681-684
    • /
    • 2015
  • Power amplifier is an essential component for transmitting signals to a remote receiver in wireless communication systems. Power amplifier is a non-linear device in general, and the nonlinear distortion becomes severer as the output power increases. The nonlinearity results in spectral regrowth, which leads to adjacent channel interference, and decreases the transmit signal quality. To linearize power amplifiers, many techniques have been developed so far. Among the techniques, digital pre-distortion is known as the most cost and performance effective technique. However, the linearization performance falls down abruptly when the power amplifier operates in its saturation region. This is because of the severe nonlinearity. To relieve this problem, this paper proposes a new adaptive predistortion technique. The proposed technique controls the adaptive algorithm based on the power amplifier input level. Specifically, for small signals, the adaptive predistortion algorithm works normally. On the contrary, for large signals, the adaptive algorithm stops until small signals occur again. By doing this, wrong coefficient update by severe nonlinearity can be avoided. Computer simulation results show that the proposed method can improve the linearization performance compared with the conventional digital predistortion algorithms.

  • PDF

Online GA-based Nonlinear System Identification (온라인 GA 기반 비선형 시스템 식별)

  • Lee, Jung-Youn;Lee, Hong-Gi
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.820-824
    • /
    • 2010
  • Genetic algorithm is known to be an effective method to solve a global nonlinear optimization. However, a huge amount of calculation is needed to improve the dependability of the solution and thus Ga is not adequate for online implementation. In this paper, we propose an online nonlinear system identification scheme which employs population feedback genetic algorithm. The effectiveness of our scheme is shown by several simulations.

Detecting Nonlinearity of Hydrologic Time Series by BDS Statistic and DVS Algorithm (BDS 통계와 DVS 알고리즘을 이용한 수문시계열의 비선형성 분석)

  • Choi, Kang Soo;Kyoung, Min Soo;Kim, Soo Jun;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.163-171
    • /
    • 2009
  • Classical linear models have been generally used to analyze and forecast hydrologic time series. However, there is growing evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations. Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. In recent, the BDS (Brock-Dechert-Scheinkman) statistic instead of conventional techniques has been used for detecting nonlinearity of time series. The BDS statistic was derived from the statistical properties of the correlation integral which is used to analyze chaotic system and has been effectively used for distinguishing nonlinear structure in dynamic system from random structures. DVS (Deterministic Versus Stochastic) algorithm has been used for detecting chaos and stochastic systems and for forecasting of chaotic system. This study showed the DVS algorithm can be also used for detecting nonlinearity of the time series. In this study, the stochastic and hydrologic time series are analyzed to detect their nonlinearity. The linear and nonlinear stochastic time series generated from ARMA and TAR (Threshold Auto Regressive) models, a daily streamflow at St. Johns river near Cocoa, Florida, USA and Great Salt Lake Volume (GSL) data, Utah, USA are analyzed, daily inflow series of Soyang dam and the results are compared. The results showed the BDS statistic is a powerful tool for distinguishing between linearity and nonlinearity of the time series and DVS plot can be also effectively used for distinguishing the nonlinearity of the time series.

유전자 알고리즘을 이용한 비모수 회귀분석

  • 김병도;노상규
    • Proceedings of the Korea Database Society Conference
    • /
    • 1998.09a
    • /
    • pp.584-594
    • /
    • 1998
  • 선형회귀분석은 가장 널리 사용되는 데이터 분석기법이지만 독립변수와 종속변수간의 관계가 선형이라고 가정하기 때문에 문제점을 가지고 있다. 비모수 회귀분석(Nonparametric Regression)은 선형회귀분석의 문제점을 극복할 수 있는 방법으로 변수간의 관계의 형태를 미리 가정하지 않고 데이터에 의해 결정하는 방법이다. 본 연구에서는 유전자 알고리즘을 비모수 회귀분석법 중의 하나인 Regressoin Splines에 적용하였다. 인위적 데이터를 이용한 평가 결과 유전자 알고리즘은 다양한 상황에서 매우 우수한 것으로 나타났다.

  • PDF

On Learning and Structure of Cerebellum Model Linear Associator Network(I) -Analysis & Development of Learning Algorithm- (소뇌모델 선형조합 신경망의 구조 및 학습기능 연구(I) -분석 및 학습 알고리즘 개발-)

  • Hwang, H.;Baek, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.186-198
    • /
    • 1990
  • 인간 소뇌의 구조와 기능을 간략하게 수학적으로 모델링하여 입력에 따른 시스템의 적정 출력을 학습에 의한 적응 제어 방식으로 추출해 내는 소뇌모델 대수제어기(CMAC : Cerebellar Model Arithmetic Controller)가 제안되었다. 본 논문에서는 연구개발된 기존 신경회로망과의 비교 분석에 의거하여, 소뇌모델 대수제어기 대신 네트의 특성에 따라 소뇌모델 선형조합 신경망(CMLAN : Cerebellum Model Linear Associator Network)이라 하였다. 소뇌모델 선형조합 신경망은 시스템의 제어 함수치를 결정하는 데 있어, 기존의 제어방식이 시스템의 모델링을 기초로 하여 알고리즘에 의한 수치해석적 또는 분석적 기법으로 모델 해를 산출하는 것과 달리, 학습을 통하여 저장되는 분산기억 소자들의 함수치를 선형적으로 조합함으로써 시스템의 입출력을 결정한다. 분산기억 소자로의 함수치 산정 및 저장은 소뇌모델 선형조합 신경망이 갖는 고유의 구조적 상태공간 매핑(State Space Mapping)과 델타규칙(Delta Rule)에 의거한 시스템의 입출력 상태함수의 학습으로써 수행된다. 본 논문을 통하여 소뇌모델 선형조합신경망의 구조적 특성, 학습 성질과 상태공간 설정 및 시스템의 수렴성을 규명하였다. 또한 기존의 최대 편차수정 학습 알고리즘이 갖는 비능률성 및 적용 제한성을 극복한 효율적 학습 알고리즘들을 제시하였다. 언급한 신경망의 특성 및 제안된 학습 알고리즘들의 능률성을 다양한 학습이득(Learning Gain)하에서 비선형 함수를 컴퓨터로 모의 시험하여 예시하였다.

  • PDF

Development of MLS Difference Method for Material Nonlinear Problem (MLS차분법을 이용한 재료비선형 문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • This paper presents a nonlinear Moving Least Squares(MLS) difference method for material nonlinearity problem. The MLS difference method, which employs strong formulation involving the fast derivative approximation, discretizes governing partial differential equation based on a node model. However, the conventional MLS difference method cannot explicitly handle constitutive equation since it solves solid mechanics problems by using the Navier's equation that unifies unknowns into one variable, displacement. In this study, a double derivative approximation is devised to treat the constitutive equation of inelastic material in the framework of strong formulation; in fact, it manipulates the first order derivative approximation two times. The equilibrium equation described by the divergence of stress tensor is directly discretized and is linearized by the Newton method; as a result, an iterative procedure is developed to find convergent solution. Stresses and internal variables are calculated and updated by the return mapping algorithm. Effectiveness and stability of the iterative procedure is improved by using algorithmic tangent modulus. The consistency of the double derivative approximation was shown by the reproducing property test. Also, accuracy and stability of the procedure were verified by analyzing inelastic beam under incremental tensile loading.