혼합·이산 비선형 최적화문제 해결을 위한 전역적 최적화 알고리즘이 개발되었으며 이 알고리즘은 확률적 최적화기법인 유전알고리즘을 사용한다. 유전알고리즘은 다양한 설계변수를 처리하는데 적합하다. 그러나 기존의 유전알고리즘이 특별히 잘 수행되지 않는 상황이 많이 존재하기 때문에 혼합화에 대한 다앙한 방법이 개발되어지고 있다. 따라서 이 논문은 유전알고리즘에서 최적해 주위에 대한 국고수수렴기법과 정밀 탐색법을 구체화시킨 새로운 혼합유전알고리즘(NHGA)을 개발했다. 사례연구에서는 혼합·이산 비선형 최적화문제를 해결하는데 있어서 NHGA가 상당한 능력을 제공하며 효율적이고 우수한 해를 제공할 수 있다는 것을 보여주고 있다.
본 논문에서는 데이터 내의 비선형 속성을 보다 빠르고 정확하게 추출하기 위한 수정된 학습알고리즘의 비선형 주요 성분분석 신경망을 제안한다. 제안된 학습알고리즘은 신경망의 학습시에 과거의 속성을 반영하기 위한 모멘트 항이 추가된 학습기법이다. 이는 최적해로의 수렴에 따른 발전을 억제하여 그 수렴성능을 좀더 개선시키는 모멘텀의 장점을 그대로 살리기 위함이다. 제안된 학습알고리즘을 이용한 신경망을 128$\times$128 픽셀의 Lenna와 256$\times$128 픽셀의 차량 번호판 영상들을 대상으로 시뮬레이션 한 결과, 제안된 학습알고리즘이 기존의 비선형 주요성분 분석을 위한 신경망이나 선형속성을 가지는 역전파 알고리즘을 이용한 신경망보다 더욱 우수한 수렴 성능과 특징추출 성능이 있음을 확인하였다.
호모토피 알고리즘은 비선형성이 강하거나 다수의 최적해가 존재하는 비선형 최적제어 문제에서 점진적으로 비선형 항으로 고려하게 해줌으로써 강건하게 전역의 최적해를 구할 수 있는 방법이다. 본 논문에서는 초기 추정치에 둔감한 SBS 알고리즘과 호모토피 알고리즘을 결합한 비선형 최적제어 알고리즘을 제시하였다. 이러한 접근방식은 저추력 궤적최적화 문제와 같이 비선형성이 강한 문제의 최적해를 구하는데 효과적이다. 또한, 비선형성이 강한 문제들은 종종 다수 국소 해가 존재하게 되는데, 이러한 경우에 SBS-호모토피 방법은 점진적으로 전역해를 찾는 것을 가능하게 한다.
본 연구에서는 비선형 최적화 문제를 효율적으로 해결하기 위한 혼합유전알고리즘(Hybrid Genetic Algorthm : HGA)을 개발하였다. HGA는 기존 유전알고리즘의 적용에 있어 문제점으로 지적된 정밀도의 적용문제와 벌금함수의 사용을 배제하였으며 지역적최적점으로 빠르게 수렴하는 기존의 지역적 탐색법과 유전알고리즘 적용이후 수렴된 해 주변에 대한 정밀탐색법을 함께 고려하여 설계하였으며 이를 세가지의 비선형 최적화 문제 적용하여 본 논문에서 개발한 HGA의 유효성을 보였다.
산업 현장에서 자동화 장비 및 모터의 정밀도가 요구되고 있고 전 세계 모터 시장 규모는 많이 증가하였지만, 국내 모터 기술은 해외 기술보다 뒤처져 있다. 본 논문에서는 모터의 기술 향상을 위해 PLC 서보 모터와 아두이노 스텝모터에 비선형 알고리즘을 적용하여 정밀도 안정도, 효율을 선형 알고리즘과 비교하였다. 비선형 알고리즘이 선형 알고리즘에 비해 모터의 최고 속도가 빨라 같은 구동 기준 소요 시간을 단축할 수 있었으며 곡률이 적어 정밀도가 향상되는 것을 확인하였다.
고효율 변조기법 (16 QAM or 64QAM)이 비선형 고전력 증폭기 (High-Power Amplifier; HPA)를 사용하는 통신시스템에 적용되었을 때 비선형 왜곡에 의해 성능저하가 발생할 수 있다. 이런 비선형 왜곡은 수신부에서 복잡도가 낮은 LMS 알고리즘을 적용한 적응적 비선형 Volterra 등화기를 사용하여 보상할 수 있지만, 매우 느린 수렴 속도를 가지는 단점이 있다. 본 논문에서는 수렴 속도를 향상시키기 위한 병렬 M대역 이산 웨이블릿 변환영역 LMS (Parallel M-band Discrete Wavelet Transform Least Mean Square) 알고리즘을 제안한다. 모의실험을 통하여 제안된 기법이 기존의 시간 영역 LMS 알고리즘과 변환 영역 LMS 알고리즘들에 비해 수렴 속도가 우수함을 보여준다.
본 논문에서는 새로운 학습알고리즘의 비선형 주요성분분석 신경망을 이용한 데이터의 효율적인 특징추출에 대하여 제안하였다. 제안된 학습알고리즘에서는 모멘트와 동적터널링을 조합하여 이용함으로써 최적해로의 수렴에 따른 발진을 억제하고 빠른 수렴속도로 전역최적해에 수렴되도록 학습시킬 수 있다. 제안된 학습알고리즘을 이용하여 128$\times$128 픽셀의 얼굴영상과 256$\times$128 픽셀의 자동차번호판 영상을 대상으로 시뮬레이션 한 결과, 기울기하강의 학습알고리즘을 이용한 기존 비선형 주요성분분석 신경망보다 우수한 수렴성능과 특징추출성능이 있음을 확인 할 수 있었다.
GPS에 의한 관측치는 시각오차, 전리층과 대류층 지연오차, 다중경로 오차와 같은 다양한 오차를 내포하고 있어서 GPS 관측치 위치계산시 일반적으로 최소자승해를 구하게 된다. GPS 관측치는 비선형 방정식을 만족하므로 최소자승해를 구하기 위해서는 비선형 Newton 알고리즘을 이용할 수도 있으나 대개 간편성과 효율성 때문에 선형화 알고리즘을 적용하게 된다. 본 연구에서는 비선형 Newton 알고리즘이나 선형화 알고리즘을 대체할 수 있는 부동점 알고리즘을 개발하여 그 유용성을 증명하였다. 비선형 Newton 알고리즘이나 선형화 알고리즘은 수렴속도가 빠른 장점을 가지고 있으나 초기값이 해와 근사하여야 한다는 단점이 있다. 반면 부동점 알고리즘은 수령속도는 다소 느리나 초기값이 대단히 부정확하여도 수렴가능한 장점이 있으므로 두 알고리즘을 적절히 혼용하는 것이 좋을 것이다.
본 논문에서는 고등해석과 유전자 알고리즘을 이용한 반강접 강뼈대 구조물의 직접설계시스템의 최적화를 수행하였다. 고등해석은 접합부의 비선형, 기하학적 비선형 및 재료적 비선형을 고려한다. 기하학적 비선형은 안정함수를 사용하여 고려하였으며, 재료적 비선형은 CRC 접선 탄성계수와 포물선 함수를 사용함으로서 고려하였다. 접합부의 비선형은 Kishi와 Chen이 제안한 3가지 매개변수를 가지는 파워모델을 사용하여 고려하였다. 최적화 기법으로는 유전자 알고리즘을 사용하였다. 목적함수는 구조물의 중량을 사용하였으며, 제약조건식은 구조시스템의 하중-저항능력, 처짐, 층간 수평변위 및 연성요구 조건을 고려하였다. 제안된 방법에 의한 설계결과를 기존의 방법들과 비교하였다.
본 논문에서는 비선형 확장 칼만 필터(Nonlinear Extended Kalman Filter)를 이용한 강인한 스테레오 정합 알고리즘을 제안한다. 기존의 스테레오 정합 알고리즘은 변이를 구할 때 좌, 우 영상을 화소별로 비교하여 검색영역을 모두 검색하였으나 제안된 알고리즘은 비선형 확장 칼만 필터를 통해 변이를 예측하고, 예측된 변이에 대한 좌, 우 영상값을 비교하는 과정을 반복적으로 수행함으로써 단지 몇 번의 검색을 통해 변이를 구하게 된다. 그리고, 양선형 보간법(bilinear interpolation)을 이용해 주위 화소들의 영향을 고려하여 예측된 변이에 대한 좌, 우 영상값을 비교함으로써 강인한 스테레오 정합의 결과를 얻을 수 있다. 제안된 알고리즘을 수행한 결과 본 알고리즘이 우수한 정합 성능을 가짐을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.