• Title/Summary/Keyword: 비선형 관성

Search Result 84, Processing Time 0.02 seconds

Dynamic Response and Control of Airship with Gust (외란이 작용하는 비행선의 동적 반응 및 제어)

  • Woo, G.A.;Park, I.H.;Oh, S.J.;Cho, K.R.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.69-77
    • /
    • 2002
  • To acquire the dynamic response and design the controller of the airship, the longitudinal motion of the airship with respect to the vertical gust, which is the nonlinear system, was studied. The effects of the apparent mass and moment of the airship delay the dynamic response and the settling time, which are slower than those of conventional airplanes. The current object of the airship is designed to cruise at 500~1000m altitude. At that height, the atmospheric conditions are generally unstable by wind gust. In this paper, it has been studied for the case of vertical gust, since the apparent mass effects are dominant in has been studied for the case of vertical gust, since the apparent mass effects are dominant in that plane. In addition to the study of the dynamic responses of the airship, the controller was designed using the PID-controller. When the gust was applied, airship responses were recovered of equilibrium states. However, it takes too ling time for recovery and the speed of airship is reduced. So, the aim in this paper was to fasten the recovery speed and to get back the cruising velocity. The control parameters were determined from the stability mode analysis, and the control inputs were the thrust and the elevator deflection angle.

Backward Path Tracking Control of a Trailer Type Robot Using a RCGS-Based Model (RCGA 기반의 모델을 이용한 트레일러형 로봇의 후방경로 추종제어)

  • Wi, Yong-Uk;Kim, Heon-Hui;Ha, Yun-Su;Jin, Gang-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.717-722
    • /
    • 2001
  • This paper presents a methodology on the backward path tracking control of a trailer type robot which consists of two parts: a tractor and a trailer. It is difficult to control the motion of a trailer vehicle since its dynamics is non-holonomic. Therefore, in this paper, the modeling and parameter estimation of the system using a real-coded genetic algorithm(RCGA) is proposed and a backward path tracking control algorithm is then obtained based on the linearized model. Experimental results verify the effectiveness of the proposed method.

  • PDF

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF

Numerical Research on the Lock-in Compensation Method of a Ring Laser Gyroscope for Reducing INS Alignment Time (관성항법장치 초기정렬시간 단축을 위한 링레이저 자이로 lock-in오차 보상방법의 수치해석적인 분석)

  • Shim, Kyu-Min;Jang, Suk-Won;Paik, Bok-Soo;Chung, Tae-Ho;Moon, Hong-Key
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • Generally, the sinusoidal cavity dither is adopted to ring laser gyroscope for eliminating the lock-in which is non-linear effect at the small rotation input. Despite this method, there are some remained errors which are generated at the dither turnaround, and those errors produce random walk which is a general character of a ring laser gyroscope. As one of the numerous research results for compensating these errors, there is a special lock-in compensation method which is the method of error estimation and compensation by comparing the beat signal periods of before and after the dither turnarounds. In this paper, by ring laser gyroscope modeling and numerical analysis, we verified the theoretical validity and confirmed the effectiveness of this method in expectation of the possible beat signal measurement time resolution. As a result, we confirmed the random walk decreases from a-half to a-third by this lock-in compensation method. So, it is expected to be a remarkable method for reducing the INS alignment time.