국내 16개 기상관측소에서 채취한 토양 시료에 대한 물성 실험을 통하여 토양의 공극률, 함수비, 밀도 및 입도 분포특성이 열전도도에 미치는 영향을 분석하였다. 상관성 분석결과 열전도도는 공극률이 증가함에 따라 감소하는 부의 상관성을 보이며 함수비가 증가함에 따라 증가하는 정의 상관성을 갖는다. 입도 분포 특성에 의한 열전도도의 변화는 미비하며 토양 입자 밀도가 클수록 열전도도가 다소 증가하는 경향을 보였다. 건조 토양의 경우 동일한 공극률에서도 열전도도의 차이가 크게 나타났다. 실험 자료를 이용하여 열전도도에 주된 영향을 미치는 공극률과 함수비를 변수로 하는 다중선형회귀모형 및 비선형회귀모형을 제시하였으며, 회귀모형의 결정계수는 각각 0.74 및 0.82로 높게 나타났다. 따라서 본 연구 결과는 공극률과 함수비를 측정하여 토양의 열전도도를 예측하는데 이용될 수 있다.
Journal of the Korean Data and Information Science Society
/
제21권3호
/
pp.419-425
/
2010
커널기계 기법은 최근 대용량 또는 고차원 비선형 자료를 분석하는 방법으로 인기를 많이 얻고 있다. 본 논문에서는 주식시장 수익률의 조건부 변동성을 예측하기 위한 일반화 이분산자기회귀모형을 추정하기 위해 커널기계 기법을 사용한다. 일반화 이분산자기회귀모형은 자료가 정규분포를 따른다고 가정한 후 주로 최대우도법을 사용하여 추정된다. 본 논문에서는 꼬리가 두꺼운 분포를 갖는 금융시계열자료의 변동성을 추정할 때 커널기계 기법이 최대우도법과 서포트벡터기계 보다 더 정확한 예측능력을 가진다는 것을 보이고자 한다.
Intergovernmental Panel on Climate Change(IPCC)에 따르면 지난 1세기 반 동안 전 세계 평균 기온은 약 1℃가 상승하였으며, 온실가스 축적에 따라 평균기온은 21세기 중반에서 21세기 말까지 1~3℃가 증가할 것으로 전망되고 있다. 이러한 기온의 상승으로 인한 하천의 수온 변화는 수중에서 온도에 민감한 생화학적 반응의 변화를 유발하여 수질 및 수생태 변화에 영향을 미칠 수 있다. 따라서 효과적인 수질 및 수생태 관리를 위해서는 기온과 수온 사이의 명확한 관계 정립을 통해 수질변화를 정확하게 예측하는 것이 중요하다. 본 연구에서는 국내·외로 널리 활용되고 있는 SWAT(Soil and Water Assessment Tool, SWAT) 모형을 통해 기온-수온 회귀식이 하천 수질변화에 미치는 영향을 정량적으로 분석하고자 하였다. 그러나 기존 SWAT 모형에서의 기온-수온 회귀식은 미국 유역의 환경 특성을 바탕으로 도출되었기 때문에 국내 유역에 적용하기에 한계점이 있다. 따라서 본 연구의 목적은 국내 유역에서의 실측 기온자료와 수온자료를 사용하여 SWAT 모형 내 기온-수온 회귀식을 재도출하고 적용성을 평가하는 것이다.
전통적인 매개변수적 목적함수 추정방법은 관측자료의 모든 영역에 걸쳐 선형 또는 지수함수 형태의 가정을 기본으로 매개변수를 추정하는 반면 비매개 변수적 Kernel 가중함수를 이용한 방법은 목적함수의 형태에 대한 가정이 필요 없이 관심 있는 임의의 추정지점에서 이웃하는 자료를 이용하여 목적함수를 국지적으로 근사하는 방법이다. 추계학적 수문학의 전형적인 문제인 "목적함수의 가정"에 의해 발생되는 문제를 줄이려는 노력의 일환으로 비매개변수적 Kernel 가중함수를 이용하는 방법에 연구되었고, 본 지면에서는 Kernel 가중함수를 이용한 비매개변수적 확률밀도함수의 기본이론과 빈도해석, 회귀모형 및 비동질성 천이확률 등의 수문학적 응용에 대하여 살펴보았다.
개인신용평가는 은행이 대출을 승인할 때 수익성 있는 의사결정을 적절히 유도할 수 있는 효과적인 도구이다. 최근 많은 분류 알고리즘 및 모델이 개인신용평가에 사용되고 있다. 개인신용평가 기법은 대체로 통계적 방법과 비 통계적 방법으로 구분된다. 통계적 방법에는 선형회귀분석, 판별분석, 로지스틱 회귀분석, 의사결정나무 등이 포함된다. 비 통계적 방법에는 선형계획법, 신경망, 유전자 알고리즘 및 Support Vector Machines 등이 포함된다. 그러나 신용평가모형 개발을 위해 어떠한 방법이 최선인지에 관해서는 일관된 결론을 내리기는 어렵다. 본 논문에서는 중국 금융기관의 개인 신용 데이터를 사용하여 가장 대표적인 신용평가 기법인 로지스틱 회귀분석, 신경망 그리고 Support Vector Machines의 성능을 비교하고자 한다. 구체적으로, 세 가지 모형을 각각 구축하여 고객을 분류하고 분석 결과를 비교하였다. 분석결과에 따르면, Support Vector Machines이 로지스틱 회귀분석과 신경망보다 더 나은 성능을 가지는 것으로 나타났다.
Journal of the Korean Data and Information Science Society
/
제9권1호
/
pp.29-36
/
1998
본 논문은 Eubank (1994, 1997)에 의해 이론적으로 제안된 선형 평활스플라인 추정량에 대한 알고리즘을 개발함으로 선형 스플라인의 추정을 보다 쉽고 효율적으로 사용할 수 있도록 하는데 목적이 있다. 이 알고리즘을 이용하여 여러가지 모형의 예들에 대하여 추정량의 적합성을 조사하였고, 제시된 선형 평활스플라인 추정량이 비모수 함수 추정의 도구로서 잘 적합됨을 알 수 있었다.
이 연구에서 Asia 금융 위기의 원인을 고찰하여 보고, European Monetary Systems의 금융 위기와 비교하여 본다. Asian 신흥 국가들은 1997년도에 금융 위기를 경험하였고, European Monetary Systems의 국가들도 1992년도에 동일한 경험을 하였다. 또한, 중남미의 신흥 경제국가인 Mexico 역시 1994년에 금융위기를 겪었다. 이 연구의 목적은 이들 금융위기의 내면을 고찰하고 그 결과로부터 일반화된 법칙을 추출하는 것이다. 이 연구에서는 금융위기를 경험한 한국과 영국과 멕시코를 각각 세가지 다른 모형으로 연구하고 비교하였다. 이 접근 방법은 체계적인 조사를 통하여 세 국가의 차이점을 보여주고 또한 공통적인 내재 요인을 관찰한다. 이전의 많은 연구 방법들은 대부분 선형 회귀식을 통한 causal model에 초점을 맞추고 있지만, 이러한 선형 회귀 모형의 약점을 보완하여서 현실에 산재하며 존재하는 비 선형의 문제를 해결하기 위하여 또 다른 방법을 제안하여 본다. 이 연구에서 사용한 구조 방정식(Structural Equation Model) 모형은 현실로부터 원인을 추출하고 분석하는 연구에 적합하며, 신경망(Artificial Neural Network) 모형은 선형모형의 단점을 보완하여서 비 선형 요인을 설명해 준다. 구조방정식 모형에 적용하기 위하여서 LISREL(LInear Structural RELationship)을 사용하였다. LISREL은 확인적 요인분석과 계량경제학에서 개발된 연립방정식모델에 토대를 둔 다중회귀분석 및 경로분석 등이 결합된 성격을 갖는 방법론으로 다양한 연구에 적용된다. 또한 인공지능(Artificial Intelligence) 기법 중의 하나인 신경망 모형은 선형회귀 분석과 다른 형태의 결과를 도출한다. 세가지 방법론의 우수성을 비교하기 위하여 Hit ratio를 각 국가/ 각 방법론 별로 구분하여서 비교한 결과 다른 방법론 보다 신경망이 더 좋은 성과를 나타내고 있는 것을 확인할 수 있었다. 세가지 방법론에 각각 일반적인 환율 예측에 사용되는 변수를 사용하였다. 소비자 물가지수(Consumer Price Index), 국내총생산(Gross Domestic Product), 이자율(Interest rate), 주가지수(Stock Index), 경상수지(Current Account), 외환보유고(Foreign Reserves)의 6가지 변수를 이용하여서 환율을 예측하여서 급격한 환율 변화로 초래되는 경제위기를 예측하려고 하였다. 각각의 국가의 데이터는 대한민국은 1991년부터 1999년까지, 영국은 1986년부터 1995년까지, 멕시코는 1988년부터 1998년까지의 기간을 정하여서 시계열자료를 분기별로 사용하였다. 각각의 데이터는 Data Stream과 한국은행(Bank of Korea)의 데이터를 이용하여서 분석하였다. 선형회귀방정식을 이용한 분석과 구조방정식인 LISREL을 이용한 분석은 각각 Hit ratio가 국가별로 순위가 변동되기도 하였으나, 인공지능 방법론인 인공신경망의 경우는 모든 국가에서 가장 좋은 예측 결과를 나타내고 있었다. 이 논문은 환율의 변동에 대한 다양한 예측 모형을 비교하고 평가하여서 연구에서 제시하는 개념을 검토하였다는 점에서 의의를 갖는다.
유역의 수문 자료를 정확하게 분석하는 것은 수리 구조물을 효율적으로 운영하기 위한 중요한 요소이다. 인공신경망(Artificial Neural Networks, ANNs) 모형은 입 출력 자료의 비선형적인 관계를 해석할 수 있는 모형으로 강우-유출 해석 등 수문 분야에 다양하게 적용되어 왔다. 이후 기존의 인공신경망 모형을 연속적인(sequential) 자료의 분석에 더 적합하도록 개선한 회귀신경망(Recurrent Neural Networks, RNNs) 모형과 회귀신경망 모형의 '장기 의존성 문제'를 개선한 장단기메모리(Long Short-Term Memory Networks, 이하 LSTM)가 차례로 제안되었다. LSTM은 최근에 주목받는 딥 러닝(Deep learning) 기법의 하나로 수문 자료와 같은 시계열 자료의 분석에 뛰어난 성능을 보일 것으로 예상되며, 수문 분야에서 이에 대한 적용성 평가가 요구되고 있다. 본 연구에서는 인공신경망 모형과 LSTM 모형으로 유출량을 모의하여 두 모형의 성능을 비교하고 향후 LSTM 모형의 활용 가능성을 검토하고자 하였다. 나주 수위관측소의 수위 자료와 인접한 기상관측소의 강우량 자료로 모형의 입 출력 자료를 구성하여 강우 사상에 대한 시간별 유출량을 모의하였다. 연구 결과, 1시간 후의 유출량에 대해서는 두 모형 모두 뛰어난 모의 능력을 보였으나, 선행 시간이 길어질수록 LSTM의 정확성은 유지되는 반면 인공신경망 모형의 정확성은 점차 떨어지는 것으로 나타났다. 앞으로의 연구에서 유역 내 다양한 수리 구조물에 의한 유 출입량을 추가로 고려한다면 LSTM 모형의 활용성을 보다 더 확장할 수 있을 것이다.
대기오염물질 중 오존은 대기성분 간의 화학반응에 의하여 광화학스모그를 형성하는 주요한 가스로서 지금까지 오존의 생성과 대기오염물질 및 기상과의 상관성을 이용한 오존 예측 연구가 다양하게 이루어져 왔다. 국내에서는 회귀모형을 이용한 오존농도 예측(허정숙등, 1993), 신경회로망을 이용한 오존농도 예측(김용국 등, 1994), Wavelet Transform을 이용한 단기오존농도 예측(김신도, 1998)등이 있고, 국외에서는 단기 오존예측(Feister & Balzer; 1991), 선형모델을 이용한 오존예측(Cox, Chu, 1992), 비선형모델을 이용한 오존예측(Peter et, 1995)등이 있다. (중략)
표본조사에서는 다수의 무응답이 발생하며 이를 적절히 처리하는 다양한 방법이 개발되었다. 특히 무응답이 관심변수에 영향을 받고 이로 인해 발생한 편향은 추정의 정확성을 크게 떨어뜨리며 무응답 처리를 어렵게 한다. 최근 Chung과 Shin (2017, 2020)은 알려진 모수적 초모집단 모형과 응답률 모형을 이용하여 추정의 정확성을 향상한 추정량을 제안하였다. 본 연구에서는 초모집단 모형의 형태를 일반화하여 비모수적 함수 형태를 설정한 후 이를 기반으로 얻어진 편향을 적절히 처리한 편향 보정 평균추정량을 제안하였다. 모의실험을 통해 본 연구에서 제안한 방법의 우수성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.