• Title/Summary/Keyword: 비선형압밀계수

Search Result 34, Processing Time 0.019 seconds

Development of Neural Network Model for Estimation of Undrained Shear Strength of Korean Soft Soil Based on UU Triaxial Test and Piezocone Test Results (비압밀-비배수(UU) 삼축실험과 피에조콘 실험결과를 이용한 국내 연약지반의 비배수전단강도 추정 인공신경망 모델 개발)

  • Kim Young-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.73-84
    • /
    • 2005
  • A three layered neural network model was developed using back propagation algorithm to estimate the UU undrained shear strength of Korean soft soil based on the database of actual undrained shear strengths and piezocone measurements compiled from 8 sites over the Korea. The developed model was validated by comparing model predictions with measured values about new piezocone data, which were not previously employed during development of model. Performance of the neural network model was also compared with conventional empirical methods. It was found that the number of neuron in hidden layer is different for the different combination of transfer functions of neural network models. However, all piezocone neural network models are successful in inferring a complex relationship between piezocone measurements and the undrained shear strength of Korean soft soils, which give relatively high coefficients of determination ranging from 0.69 to 0.72. Since neural network model has been generalized by self-learning from database of piezocone measurements and undrained shear strength over the various sites, the developed neural network models give more precise and generally reliable undrained shear strengths than empirical approaches which still need site specific calibration.

The Change in Geotechnical Properties of the Deposited Clay Contaminated by Leachate from Waste Disposals (침출수로 오염된 퇴적점토의 역학적 특성변화)

  • Ha, Kwang-Hyun;Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.43-54
    • /
    • 2006
  • In this paper, the uniaxial, triaxial compression tests and consolidation tests on the clay sample substituted initial pore water for pollutant were performed to evaluate the change in geotechnical properties of the contaminated clay. The contaminant transport analysis on embankment type landfill using the MT3D model was also performed to evaluate the extent of transport and diffusion. There was tendency that strength, compressibility and permeability has increased with the increase in the concentration of NaCl solution. The increase in the strength and compressibility of sample saturated with leachate was higher than samples saturated with NaCl solution, but in the permeability coefficient was lower. As the result of contaminant transport analysis, the predicted concentration was in high with the increase in the initial concentration of $Cl^-$ ion and increased in a non-linear form. The transportation distance calculated with use of regression equation between the distance from contaminant source and the concentration of $Cl^-$ ion was increased with the increase in the initial concentration.

  • PDF

A Study on the Liquefaction Resistance of Anisotropic Sample under Real Earthquake Loading (이방 구속 조건에서 실지진 하중을 이용한 포화사질토의 액상화 저항강도 특성)

  • Lee, Chae-Jin;Kim, Soo-Il;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.5-14
    • /
    • 2010
  • In this study, cyclic triaxial tests were performed under anisotropically consolidated condition by using irregular earthquake loading to consider in-situ condition and seismic wave. Jumunjin sand with a relative density 50 percent was used in the tests. The consolidation pressure ratio (K) was changed from 0.5 to 1.0. The Ofunato and Hachinohe wave were applied as irregular earthquake loadings and liquefaction resistance strengths of each specimen were estimated from the excess pore water pressure (EPWP) ratio. As a results of the cyclic triaxial tests, EPWP ratio increased with increased K value. It shows that isotropically consolidated sand is more susceptible to liquefaction than anisotropically consolidated sand under equal confining pressure and dynamic loadings. From the test results, the relationship between K and EPWP ratio normalized by effective confining pressure and deviator stress was proposed. And a new factor which corrects the liquefaction resistance strength for the in-situ stress condition is proposed.

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.