• Title/Summary/Keyword: 비모수자기회귀모형

Search Result 17, Processing Time 0.021 seconds

A Hierarchical Bayesian Modeling of Temporal Trends in Return Levels for Extreme Precipitations (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.137-149
    • /
    • 2015
  • Flood planning needs to recognize trends for extreme precipitation events. Especially, the r-year return level is a common measure for extreme events. In this paper, we present a nonstationary temporal model for precipitation return levels using a hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitation measured in Korea with a generalized extreme value (GEV). The temporal dependence among the return levels is incorporated to the model for GEV model parameters and a linear model with autoregressive error terms. We apply the proposed model to precipitation data collected from various stations in Korea from 1973 to 2011.

Generalized Maximum Entropy Estimator for the Linear Regression Model with a Spatial Autoregressive Disturbance (오차항이 SAR(1)을 따르는 공간선형회귀모형에서 일반화 최대엔트로피 추정량에 관한 연구)

  • Cheon, Soo-Young;Lim, Seong-Seop
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • This paper considers a linear regression model with a spatial autoregressive disturbance with ill-posed data and proposes the generalized maximum entropy(GME) estimator of regression coefficients. The performance of this estimator is investigated via Monte Carlo experiments. The results show that the GME estimator provides efficient and robust estimate for the unknown parameter.

Density estimation of summer extreme temperature over South Korea using mixtures of conditional autoregressive species sampling model (혼합 조건부 종추출모형을 이용한 여름철 한국지역 극한기온의 위치별 밀도함수 추정)

  • Jo, Seongil;Lee, Jaeyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1155-1168
    • /
    • 2016
  • This paper considers a probability density estimation problem of climate values. In particular, we focus on estimating probability densities of summer extreme temperature over South Korea. It is known that the probability density of climate values at one location is similar to those at near by locations and one doesn't follow well known parametric distributions. To accommodate these properties, we use a mixture of conditional autoregressive species sampling model, which is a nonparametric Bayesian model with a spatial dependency. We apply the model to a dataset consisting of summer maximum temperature and minimum temperature over South Korea. The dataset is obtained from University of East Anglia.

A Fast Bayesian Detection of Change Points Long-Memory Processes (장기억 과정에서 빠른 베이지안 변화점검출)

  • Kim, Joo-Won;Cho, Sin-Sup;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.735-744
    • /
    • 2009
  • In this paper, we introduce a fast approach for Bayesian detection of change points in long-memory processes. Since a heavy computation is needed to evaluate the likelihood function of long-memory processes, a method for simplifying the computational process is required to efficiently implement a Bayesian inference. Instead of estimating the parameter, we consider selecting a element from the set of possible parameters obtained by categorizing the parameter space. This approach simplifies the detection algorithm and reduces the computational time to detect change points. Since the parameter space is (0, 0.5), there is no big difference between the result of parameter estimation and selection under a proper fractionation of the parameter space. The analysis of Nile river data showed the validation of the proposed method.

Modelling of Wind Wave Pressure and Free-surface Elevation using System Identification (시스템 식별기법을 활용한 파압과 해수면 모델링)

  • Cieslikiewicz, Witold;Badur, Jordan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.422-432
    • /
    • 2013
  • A System Identification method to develop parametric models linking free surface elevation and wave pressure is presented and two models are built allowing for either wave pressure or free surface elevation simulation. Linear, time invariant model structures with static nonlinearities are assumed and solutions are sought in a form of autoregressive model with extra input (ARX). An arbitrary chosen free-surface elevation and wave pressure dataset is used for estimation of the models, which are subsequently verified against datasets with similar pressure gauge depth but different free-surface elevation spectra due to different meteorological conditions. It is shown that free-surface simulation using System Identification methods can perform better than traditional linear transfer function derived from linear wave theory (LTF), while wave pressure simulation quality using presented methods is generally similar to that obtained with corrected LTF.

Modeling and Simulation of Road Noise by Using an Autoregressive Model (자기회귀 모형을 이용한 로드노이즈 모델링과 시뮬레이션)

  • Kook, Hyung-Seok;Ih, Kang-Duck;Kim, Hyoung-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.888-894
    • /
    • 2015
  • A new method for the simulation of the vehicle's interior road noise is proposed in the present study. The road noise model can synthesize road noise of a vehicle for varying driving speed within a range. In the proposed method, interior road noise is considered as a stochastic time-series, and is modeled by a nonstationary parametric model via two steps. First, each interior road noise signal, obtained from constant speed driving tests performed within a range of speed, is modeled as an autoregressive model whose parameters are estimated by using a standard method. Finally, the parameters obtained for different driving speeds are interpolated based on the varying driving speed to yield a time-varying autoregressive model. To model a full band road noise, audible frequency range is divided into an octave band using a wavelet filter bank, and the road noise in each octave band is modeled.

A Test for Nonlinear Causality and Its Application to Money, Production and Prices (통화(通貨)·생산(生産)·물가(物價)의 비선형인과관계(非線型因果關係) 검정(檢定))

  • Baek, Ehung-gi
    • KDI Journal of Economic Policy
    • /
    • v.13 no.4
    • /
    • pp.117-140
    • /
    • 1991
  • The purpose of this paper is primarily to introduce a nonparametric statistical tool developed by Baek and Brock to detect a unidirectional causal ordering between two economic variables and apply it to interesting macroeconomic relationships among money, production and prices. It can be applied to any other causal structure, for instance, defense spending and economic performance, stock market index and market interest rates etc. A key building block of the test for nonlinear Granger causality used in this paper is the correlation. The main emphasis is put on nonlinear causal structure rather than a linear one because the conventional F-test provides high power against the linear causal relationship. Based on asymptotic normality of our test statistic, the nonlinear causality test is finally derived. Size of the test is reported for some parameters. When it is applied to a money, production and prices model, some evidences of nonlinear causality are found by the corrected size of the test. For instance, nonlinear causal relationships between production and prices are demonstrated in both directions, however, these results were ignored by the conventional F-test. A similar results between money and prices are obtained at high lag variables.

  • PDF