• Title/Summary/Keyword: 비례항법유도

Search Result 32, Processing Time 0.017 seconds

Development of the integrated management simulation system for the target correction (표적 수정이 가능한 사용자 개입 통합 관리 모의 시스템 개발)

  • Park, Woosung;Oh, TaeWon;Park, TaeHyun;Lee, YongWon;Kim, Kibum;Kwon, Kijeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.600-609
    • /
    • 2017
  • We designed a target management integration system that enables us to select the final target manually or automatically from seeker's sensor image. The integrated system was developed separately for the air vehicle system and the ground system. The air vehicle system simulates the motion dynamics and the sensor image of the air vehicle, and the ground system is composed of the target template image module and the ground control center module. The flight maneuver of the air vehicle is based on pseudo 6-degree of freedom motion equation and the proportional navigation guidance. The sensor image module was developed using the known infrared(IR) image rendering method, and was verified by comparing the rendered image to that of a commercial software. The ground control center module includes an user interface that can display as much information to meet user needs. Finally, we verified the integrated system with simulated impact target mission of the air vehicle, by confirming the final target change and the shot down result of the user's intervention.

The Extraction Method for the G-Sensitivity Scale-Factor Error of a MEMS Vibratory Gyroscope Using the Inertial Sensor Model (관성센서 오차 모델을 이용한 진동형 MEMS 자이로스코프 G-민감도 환산계수 오차 추출 기법)

  • Park, ByungSu;Han, KyungJun;Lee, SangWoo;Yu, MyeongJong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.438-445
    • /
    • 2019
  • In this paper, we present a new approach to extract the g-sensitivity scale-factor error for a MEMS gyroscope. MEMS gyroscopes, based on the use of both angular momentum and the Coriolis effect, have a g-sensitivity error due to mass unbalance. Generally, the g-sensitivity error is not considered in general use of gyroscopes, but it deserves our attention if we are to develop for tactical class performance and reliability. The g-sensitivity error during vehicle flight increases navigation error; so it must be analyzed and compensated for the use of MEMS IMU for high dynamics vehicle systems. Therefore, we analyzed how to extract the g-sensitivity scale-factor error from the inertial sensor error model. Furthermore we propose a new method to extract the g-sensitivity error using flight motion simulator. We verified our proposed method with experimental results.