• Title/Summary/Keyword: 비디오 캡셔닝

Search Result 4, Processing Time 0.017 seconds

Image captioning and video captioning using Transformer (Transformer를 사용한 이미지 캡셔닝 및 비디오 캡셔닝)

  • Gi-Duk Kim;Geun-Hoo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.303-305
    • /
    • 2023
  • 본 논문에서는 트랜스포머를 사용한 이미지 캡셔닝 방법과 비디오 캡셔닝 방법을 제안한다. 트랜스포머의 입력으로 사전 학습된 이미지 클래스 분류모델을 거쳐 추출된 특징을 트랜스포머의 입력으로 넣고 인코더-디코더를 통해 이미지와 비디오의 캡션을 출력한다. 이미지 캡셔닝의 경우 한글 데이터 세트를 학습하여 한글 캡션을 출력하도록 학습하였으며 비디오 캡셔닝의 경우 MSVD 데이터 세트를 학습하여 학습 후 출력 캡션의 성능을 다른 비디오 캡셔닝 모델의 성능과 비교하였다. 비디오 캡셔닝에서 성능향상을 위해 트랜스포머의 디코더를 변형한 GPT-2를 사용하였을 때 BLEU-1 점수가 트랜스포머의 경우 0.62, GPT-2의 경우 0.80으로 성능이 향상됨을 확인하였다

  • PDF

피처레벨 비디오 분석과, 적응적 장면 선택을 이용한 비디오 캡셔닝 피처 생성

  • Lee, Ju-Hee;Kang, Je-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.212-214
    • /
    • 2020
  • 본 논문에서는 비디오의 피처레벨 분석을 통해 비디오의 장면 구성 특징을 파악하고, 그에 적응적으로 대표 프레임을 선택하는 방법을 제안한다. 제안된 방법으로 생성된 캡셔닝 피처는 비디오를 잘 요약하고, 이를 통해 효과적인 캡셔닝을 수행할 수 있다. 기존 비디오 캡셔닝 연구에서는 비디오의 장면 구성을 고려하지 않고 단순 등간격으로 프레임 추출을 통하여 비디오 캡셔닝을 수행하였다. 이는 다양한 장면의 모임으로 이루어진 비디오의 특성을 고려하지 않은 방법으로, 경우에 따라 주요 장면을 놓치거나, 불필요하게 중복된 프레임을 선택하는 문제가 발생한다. 본 논문에서는 비디오의 피처레벨 분석을 통해 비디오의 구성 특징을 파악하고, 이를 고려해 적응적으로 주요 프레임을 추출하여 이와 같은 문제를 해결하여 비디오 캡셔닝 에서의 성능향상을 보인다. 제안 알고리즘을 이용하여 생성된 피처는 비디오를 잘 요약하여 비디오 캡셔닝 수행 시, MSVD 데이터 셋에서 4 개의 평가지표에 대해 약 0.78%의 성능향상을 보였고, MSR-VTT 데이터 셋에서 약 0.6%의 성능향상을 보였다.

  • PDF

Analysis of Research Trends in Deep Learning-Based Video Captioning (딥러닝 기반 비디오 캡셔닝의 연구동향 분석)

  • Lyu Zhi;Eunju Lee;Youngsoo Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-49
    • /
    • 2024
  • Video captioning technology, as a significant outcome of the integration between computer vision and natural language processing, has emerged as a key research direction in the field of artificial intelligence. This technology aims to achieve automatic understanding and language expression of video content, enabling computers to transform visual information in videos into textual form. This paper provides an initial analysis of the research trends in deep learning-based video captioning and categorizes them into four main groups: CNN-RNN-based Model, RNN-RNN-based Model, Multimodal-based Model, and Transformer-based Model, and explain the concept of each video captioning model. The features, pros and cons were discussed. This paper lists commonly used datasets and performance evaluation methods in the video captioning field. The dataset encompasses diverse domains and scenarios, offering extensive resources for the training and validation of video captioning models. The model performance evaluation method mentions major evaluation indicators and provides practical references for researchers to evaluate model performance from various angles. Finally, as future research tasks for video captioning, there are major challenges that need to be continuously improved, such as maintaining temporal consistency and accurate description of dynamic scenes, which increase the complexity in real-world applications, and new tasks that need to be studied are presented such as temporal relationship modeling and multimodal data integration.

A study on the Problems of Overcomputation in Deep Networks (심층 네트워크의 과계산 문제에 대한 고찰)

  • Park, Da-Sol;Son, Jeong-Woo;Kim, Sun-Joong;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.120-124
    • /
    • 2019
  • 딥러닝은 자연어처리, 이미지 처리, 음성인식 등에서 우수한 성능을 보이고 있다. 그렇지만 복잡한 인공신경망 내부에서 어떠한 동작이 일어나는지 검증하지 못하고 있다. 본 논문에서는 비디오 캡셔닝 분야에서 인공신경망 내부에서 어떠한 동작이 이루어지는지 검사한다. 이를 위해서 우리는 각 단계에서 출력층을 추가하였다. 출력된 결과를 검토하여 인공 신경망의 정상동작 여부를 검증한다. 우리는 한국어 MSR-VTT에 적용하여 우리의 방법을 평가하였다. 이러한 방법을 통해 인공 신경망의 동작을 이해하는데 도움을 줄 수 있을 것으로 기대된다.

  • PDF