• Title/Summary/Keyword: 비등온 제트

Search Result 3, Processing Time 0.02 seconds

Temperature Field Measurement of Non-Isothermal Jet Flow Using LIF Technique (레이저형광여기(LIF)를 이용한 비등온 제트유동의 온도장 측정)

  • Yoon, Jong-Hwan;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1399-1408
    • /
    • 2000
  • A 2-dimensional temperature field measurement technique using PLIF (Planar Laser Induced Fluorescence) was developed and it was applied to an axisymmetric buoyant jet. Rhodamine B was used as a fluorescent dye. Laser light sheet illuminated a two-dimensional cross section of the jet. The intensity variations of LIF signal from Rhodamine B molecules scattered by the laser light were captured with an optical filter and a CCD camera. The spatial variations of temperature field of buoyant jet were derived using the calibration data between the LIF signal and real temperature. The measured results show that the turbulent jet is more efficient in mixing compared to the transition and laminar jet flows. As the initial flow condition varies from laminar to turbulent flow, the entrainment from ambient fluid increases and temperature decay along the jet center axis becomes larger. In addition to the mean temperature field, the spatial distributions of temperature fluctuations were measured by the PLIF technique and the result shows the shear layer development from the jet nozzle exit.

Velocity Field Measurements of a Vertical Turbulent Buoyant Jet Using a PIV Technique (PIV 기법을 이용한 비등온 부력제트의 유동구조에 관한 연구)

  • Sin, Dae-Sik;Yun, Jeong-Hwan;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.611-618
    • /
    • 2001
  • The flow characteristics of a turbulent buoyant jet were experimentally investigated using a single-frame PIV system. The Reynolds number based on the nozzle exit velocity and nozzle diameter was about Re=5$\times$10$^3$. The instantaneous velocity fields in the streamwise plane passing the jet axis were measured in the near field X/D <11 with and without the temperature gradient. By ensemble averaging the instantaneous velocity fields, the spatial distributions of mean velocity, vorticity, and higher-order statistics up to third order were obtained. The temperature difference of 10$\^{C}$ does not affect a significant influence to the flow structure in the near field, but the total entrainment rate is increased slightly. The entrainment rate shows a linear variation with the streamwise distance in the region after X/D=5.0.

Numerical Modeling of Two-Phase Non-Isothermal Turbulent Jet (비등온 난류 제트의 이상유동에 대한 수치모델)

  • Lien, Hoang Duc;Kim, Myong-Kwan;Kwon, Oh-Boong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.783-788
    • /
    • 2001
  • Choosing the most suitable mathematical model and relating this to turbulent tangential tensions model are very important in the investigations of turbulent two-phase flow. This paper considers two-fluid scheme. According to it, two phases have their own densities, velocities, and temperatures at any spatial point and at any moment. The equations of motion and heat transfer for each phase are linked with the forces of interaction between two phases. These forces are considered as predominant for the flow. As a closure in the system of motion equations, one modification of $K - {\epsilon}$ turbulent model is worked out. The modification uses two equations for turbulent kinetic energy of the phases and one - for the turbulent energy loss of main phase. This model can be set as a $K_g - K_p -{\epsilon}$ model. The modified model has been tested for both a two-phase non-isothermal flat jet and axially symmetrical jet. The numerical results are compared with the reference data revealing a good agreement between them.

  • PDF