• Title/Summary/Keyword: 비동질적인 포아송 프로세스

Search Result 2, Processing Time 0.015 seconds

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Logarithmic Learning Effects (대수형 학습효과에 근거한 소프트웨어 신뢰모형에 관한 통계적 공정관리 비교 연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.319-326
    • /
    • 2013
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of logarithmic hazard learning effects property.

The Comparative Study for Software Reliability Models Based on NHPP (NHPP에 기초한 소프트웨어 신뢰도 모형에 대한 비교연구)

  • Gan, Gwang-Hyeon;Kim, Hui-Cheol;Lee, Byeong-Su
    • The KIPS Transactions:PartD
    • /
    • v.8D no.4
    • /
    • pp.393-400
    • /
    • 2001
  • This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process (NHPP). The failure process is analyzed to develop a suitable mean value function for the NHPP ; expressions are given for several performance measure. Actual software failure data are compared with generalized model by Goel dependent on the constant reflecting the quality of testing. The performance measures and parametric inferences of the new models, Rayleigh and Gumbel distributions, are discussed. The results of the new models are applied to real software failure data and compared with Goel-Okumoto and Yamada, Ohba and Osaki models. Tools of parameter inference was used method of the maximun likelihood estimate and the bisection algorithm for the computing nonlinear root. In this paper, using the sum of the squared errors, model selection was employed. The numerical example by NTDS data was illustrated.

  • PDF