• Title/Summary/Keyword: 비대칭 형상 제품

Search Result 4, Processing Time 0.017 seconds

An Investigation on the Forging Process of an Irregular Shape Product (비대칭 형상제품의 단조공정에 관한 연구)

  • 정경빈;김현수;최영순;김용조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1101-1104
    • /
    • 2004
  • A brake spider in an irregular shape, which is used as a part in the braking system of a vehicle like a big truck and a trailer, is subjected to a large torque and hence requires both strength and endurance over the brake heat. Manufacture of this product in practice is generally composed of hot forging processes and machining. At the present study, two or more processes were considered for the hot forging. With an initial circular billet, blocker and finisher processes were analyzed using the rigid-plastic finite element method and also in addition to the preforming process. Proper forging processes to manufacture an irregular product without forging defects, which are preforming, blocker and finisher, were discussed and commented upon.

  • PDF

Investigation into Thread Rolling Characteristics of Subminiature Screws According to Thread Shapes (나사산 형상에 따른 초소형 나사 전조공정의 성형특성 고찰)

  • Lee, Ji Eun;Kim, Jong Bong;Park, Keun;Ra, Seung Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.971-978
    • /
    • 2016
  • Recent trends in miniaturization and lightness in portable electronics parts have driven developments in subminiature screws. This study aims to investigate the thread rolling process of a subminiature screw with an outer diameter and pitch of 1.0 and 0.25 mm, respectively. Finite element (FE) analyses were performed for the thread rolling process of symmetric and asymmetric screw threads. Through FE analyses, various process parameters, such as the horizontal and vertical die gap and the rolling stroke, were investigated in terms of the forming accuracy. The material flow characteristics in the thread rolling process of the symmetric and asymmetric screws were also discussed, and the relevant process parameters were determined accordingly. These simulation results were then reflected on real thread rolling processes, from which the symmetric and asymmetric screws could be formed successfully with allowable dimensional accuracy.

Spring-back in GFR / CFR Unsymmetric Hybrid Composite Materials (유리섬유 / 탄소섬유 강화 비대칭 하이브리드 복합재료의 스프링 백)

  • Jung Woo-Kyun;Ahn Sung-Hoon;Won Myung-Shik
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The fiber-reinforced composite materials have been advanced for various applications because of their excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation mainly from temperature drop from the process temperature to the room temperature, so called spring-back. The spring-back must be understood especially in the hybrid composites in order to design and fabricate desired shape. In this research, (glass fiber / epoxy) + (carbon fiber / epoxy) unsymmetric hybrid composites were fabricated under various conditions such as cure cycle, laminate thickness, stacking sequence and curing sequence. Coupons were made and spring-back were measured using coordinate measuring machine (CMM). Using the Classical Lamination Theory (CLT) and finite element analysis (ANSYS), the behavior of spring-back were predicted and compared with the experimental data. The results from CLT and FEA agreed well with the experimental data. Although, the spring-back could be reduced by lowering curing temperature, at any case, the spring-back could not be removed completely.

Finite Element Analysis of a Customized Eyeglass Frame Fabricated by 3D Printing (3 차원 프린팅으로 제작된 개인맞춤형 안경테의 유한요소해석)

  • Lee, Ji-Eun;Im, Young-Eun;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • In recent years, 3D printing has received increasing attention due to releases of low-cost 3D printers based on open-source platform. 3D printing is expected to reduce the barrier to entry in the traditional manufacturing processes by increasing flexibility and creating an advantage to manufacture customized products at low costs. In this study, a unique eyeglass frame was designed to have a snake shape, which has an asymmetric geometry unlike traditional frames. The eyeglass frame was designed in a customized manner by reflecting dimensional characteristics of a customer's face. Finite element analysis was performed to investigate the structural safety of the 3D printed frames during the assembly process. The analysis also considered the effect of anisotropic material properties as determined by tensile tests. The eyeglass frame was then printed using the customized sizes and the best building process. The eyeglass frame was successfully assembled with lenses and without structural failure during its assembly procedure.