• Title/Summary/Keyword: 비대칭 윌킨슨 전력분배기

Search Result 5, Processing Time 0.017 seconds

A study on the design of a Milimeterwave-Band 2:1 Unequal Wilkinson Power Divider Using DGS (DGS를 이용한 밀리미터 대역의 2:1 비대칭 윌킨슨 전력분배기 설계에 관한 연구)

  • Kim Dong-Joo;Ahn Dal
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.115-118
    • /
    • 2004
  • 본 논문에서는 DGS를 이용한 밀리미터대역의 2:1 비대칭 윌킨슨 전력분배기를 설계하였다. DSG(Defected Ground Structure)의 전파지연특성과 전송선로의 높은 임피던스 특성을 이용하여 전력분배기의 크기감소와 구현의 용이성을 실현하였다. 본 논문에서 설계한 전력분배기는 MEMS 기술로 제작이 가능하며 시뮬레이션 결과를 통하여 제시된 설계방법의 타당성을 입증하였다.

  • PDF

Unequal Dual-band Wilkinson Power Divider (비대칭 이중대역 전력분배기)

  • Kim, Byung-Chul;Lee, Soo-Jung;Kim, Young
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • This paper suggested a theoretical approach and an implementation for the design of an unequal Wilkinson power divider with a high dividing ratio operating at two-frequencies. The T-section transmission lines and the two-section of Monzon's theory are proposed to operate a dual-band application. To achieve the high dividing ratio divider, the high impedance line using a T-shaped structure and low impedance lines with periodic shunt open stubs are implemented. For the validation of this divider, a dual-band power divider with a high dividing ratio of 5 is simulated and measured at 1 GHz and 2 GHz. The measured performances of the divider are in good agreements with simulation results.

An Unequal Dual-Band Lumped Element Power Divider (비대칭 이중대역 집중소자 전력분배기)

  • Yoo, Jae-Hyun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.578-584
    • /
    • 2011
  • This paper presents the design and measured performances of an unequal dual-band power divider using lumped elements. After the divider is designed using the conventional single band Wilkinson topology with lumped elements, we obtained the dual band characteristics with filter conversion method. This design method has the features of compact size and easy fabrication, because the high impedance transmission line realizes the lumped elements of equivalent circuit. As an example, an 2:1 divider has been designed and measured at 880 MHz and 1650 MHz in order to show the validity of the proposed unequal divider. The measured performances of the unequal power divider agree with the simulation results.

Dual-Band Unequal Power Divider based on CRLH Transmission Line (CRLH 전송선로를 기반으로 한 이중대역 비대칭 전력 분배기)

  • Yoo, Jae-Hyun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.909-915
    • /
    • 2010
  • In this paper, the unequal power divider based on CRLH (Composite Right/Left-Handed) transmission line with dual-band characteristic is proposed. They consist of dual-band branch line hybrid coupler, the connection between input and isolation port of hybrid coupler and ${\lambda}/4$ impedance transformer. When the transmission line between input and isolation port of hybrid coupler is asymmetrical connected, the divider is obtained the output results of the equal phase and unequal power dividing ratio. The simulation results of the divider represent the power ratio of 0 dB ~ 20 dB. To validate a function of divider, the hybrid coupler and transformer with 880 MHz and 1850 MHz is implemented. As a result, the proposed unequal divider obtains the power ratio of 3.2 dB ~ 8.8 dB at 880 MHz and 2.5 dB ~ 14.0 dB at 1850 MHz.

Power Dividers for High Splitting Ratios using Transmission Line Connected with Open and Short Stubs (단선과 단락 스터브가 연결된 전송선로를 이용한 높은 분배비율을 갖는 전력 분배기)

  • Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.229-235
    • /
    • 2021
  • This paper proposes a method of implementing an unequal power divider for high splitting ratios by using transmission lines connected with open and short stubs. The proposed method is an equivalent circuit analysis of a transmission line with an additional port so that it can be converted to an arbitrary impedance in the center of a 2-port transmission line and a 3-port transmission line with an open or short stub connected in parallel to each port. To prove the validity of this method, a Wilkinson power divider with k2 = 20 dB splitting ratio and a Gysel power divider with k2 = 17 dB splitting ratio were designed at a center frequency of 1 GHz using a 3-port transmission line equivalent circuit. The experimental results of the electrical characteristics are in good agreement with the simulation.