• Title/Summary/Keyword: 비균일 유리 B 스플라인

Search Result 15, Processing Time 0.024 seconds

Real-Time Surface Interpolator for Multiple Surface Machining Based on a Surface Cycle Command (복합 사이클 코드 지령 방식의 다중곡면 가공을 위한 실시간 곡면 보간기)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.97-107
    • /
    • 2007
  • The present CNC machining system if without any CAM software has been limited to 2D or 2.5D plane cut using lines, arcs and curves. If the CNC is equipped with a surface interpolation module and a surface reorganizing module inside it, we can easily try 3D surface machining without aid of CAM software. The existing NURBS surface interpolator is simple and direct to use for a unit surface. However, it enables only machining of each reference surface individually even when machining a simple composite surface. In this paper, we propose a method which can unify and reorganize various reference surfaces with a newly defined NURBS surface cycle command: a multi-repetitive cycle command such as in a CNC turning center. We also introduce a reorganizing rule for reference surfaces using NURBS properties. The usefulness of the proposed method is verified through computer simulation.

Real-Time Tool-Path Generation for 3-Axis CNC Machining of NURBS Surfaces (NURBS 곡면의 3축 CNC 가공을 위한 실시간 공구경로 생성)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1418-1425
    • /
    • 2003
  • In CAD systems, a surface to be machined is expressed by a series of curves, such as B-spline, Bezier and NURBS curves, which compose the surface and then in CAM systems the curves are divided into a large number of line or arc segments. These divided movement commands, however, cause many problems including their excessive size of NC data that makes almost impossible local adjustment or modification of the surface. To cope with those problems, the necessity of real-time curve or surface interpolators was embossed. This paper presents an efficient real-time tool-path generation method fur interpolation of NURBS surfaces in CNC machining. The proposed tool-path generation method is based on an improved iso-scallop strategy and can provide better precision than the existing methods. The proposed method is designed such that tool-path planning is easily managed in real-time. It proposed a new algorithm for regulation of a scallop height, which can efficiently generate tool-paths and can save machining time compared with the existing method. Through computer simulations, the performance of the proposed method is analyzed and compared with the existing method in terms of federate, total machining time and a degree of constraint on the scallop height.

Integrated NURBS Surface Interpolator Considering Both Rough and Finish Cuts (황삭 및 정삭을 고려한 통합형 NURBS 곡면 인터폴레이터)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1958-1966
    • /
    • 2003
  • Three-axis CNC surface machining entails a series of processes including rough cutting, intermediate cutting and finish cutting for a reference surface defined in CAD/CAM. This study is targeting development of an integrated NURBS surface interpolator that can incorporate rough, intermediate and finish cutting processes. In each process, volume to be removed and cutting condition are different according to the shape of a part to be machined and the reference surface. Accordingly, the proposed NURBS surface interpolator controls motion in real-time optimized for the machining conditions of each process. In this paper, a newly defined set of G-codes is proposed such that NURBS surface machining through CNC is feasible with minimal information on the surface composition. To verify the usefulness of the proposed interpolator, through computer simulations on NURBS surface machining, total machining time, size of required NC data and cutting force variations are compared with the existing method.

Intelligent NURBS Surface Interpolation System with Embedded Online Tool-Path Planning (온라인 방식의 공구경로 계획을 내장한 지능형 NURBS 곡면 보간 시스템)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.156-163
    • /
    • 2006
  • The purpose of this study is to improve the machining of free-formed NURBS surfaces using newly defined G-codes which can directly deal with shapes defined from CAD/CAM programs on a surface basis and specialize in rough and finish cut. To this purpose, a NURBS surface interpolation system is proposed in this paper. The proposed interpolation system includes online tool-path planning, real-time interpolation and feedrate regulation considering an effective machining method and minimum machining time all suitable for unit NURBS surface machining. The corresponding algorithms are simultaneously executed in an online manner. The proposed NURBS surface interpolation system is integrated and implemented with a PC-based 3-axis CNC milling system. A graphic user interface (GUI) and a 3D tool-path viewer which interprets the G-codes for NURBS surfaces and displays whole tool-paths are also developed and included in our real-time control system. The proposed system is evaluated through actual machining in terms of size of NC data, machining time, regulation of feedrate and cutting force focused on finish cut in comparison with the existing method.

Automatic NURBS Surface Generation from Unorganized Point Cloud Data (임의의 점 군 데이터로부터 NURBS 곡면의 자동생성)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.200-207
    • /
    • 2006
  • In this paper a new approach which combines implicit surface scheme and NURBS surface interpolation method is proposed in order to generate a complete surface model from unorganized point cloud data. In the method a base surface was generated by creating smooth implicit surface from the input point cloud data through which the actual surface would pass. The implicit surface was defined by a combination of shape functions including quadratic polynomial function, cubic polynomial functions and radial basis function using adaptive domain decomposition method. In this paper voxel data which can be extracted easily from the base implicit surface were used in order to generate rectangular net with good quality using the normal projection and smoothing scheme. After generating the interior points and tangential vectors in each rectangular region considering the required accuracy, the NURBS surface were constructed by interpolating the rectangular array of points using boundary tangential vectors which assure C$^1$ continuity between rectangular patches. The validity and effectiveness of this new approach was demonstrated by performing numerical experiments for the various types of point cloud data.