• Title/Summary/Keyword: 비교 유전체 보합법

Search Result 2, Processing Time 0.015 seconds

Cytogenetic Analysis in Korean Head and Neck Cancer Cell Lines: Comparative Genomic Hybridization(CGH) and Array-CGH (두경부 편평상피세포암 세포주의 염색체 이상 분석: 비교유전체보합법과 Array 비교유전체보합법)

  • Shin, You-Ree;Park, Soo-Yeun;Lee, Dong-Wook;Kim, Han-Su;Go, Young-Min;Park, Hyun-Joo;Choung, Sung-Min
    • Korean Journal of Head & Neck Oncology
    • /
    • v.24 no.1
    • /
    • pp.33-42
    • /
    • 2008
  • Head and neck squamous cell carcinoma(HNSCC) is notorious for its poor outcome and increasing incidence. But, the studies of cytogenetic analysis in HNSCC are relatively rare, because of difficulties in culturing solid tumor cells and complexity in chromosomal DNA abberations associated with the lesions. The purpose of this study is to evaluate the location of chromosomal aberrations in Korean HNSCC cell lines (SNU-1041, 1066, and 1076) with comparative genomic hybridization(CGH) and array based CGH(array-CGH). Chromosomal gains of 3q23-q27, 5p13-p15.3, 7p21-pter, 8q11.2-q12, 8q21.1-qter, 9q22-q34, 16q22-q24, and 20q11.2-qter, as well as chromosomal losses on 3p10-p14 were found in all 3 SNU cell lines. Losses on 3p15- p23, 4q22-q27, 4q31.3-qter, 6q14-q15, 7q31-q34, 8p12-pter, 18q21-q23, and 21q11.2-q12 were observed in 2 of 3 cell lines. In array-CGH, many genes were altered including gains of PIK3CA, MYC, EVI1, MAD1L1 genes and losses of SERPIN genes. These aberrations of gene and chromosome coincide with other results of study, generally. These data about the patterns of chromosomal aberrations could be a basic step for understanding more detailed genetic events in the carcinogenesis and also provide information for diagosis and treatment in HNSCC.

Genomic Alterations in Korean Laryngeal Squamous Cell Carcinoma: Array-Comparative Genomic Hybridization (한국인 후두 편평 상피 세포암의 유전체 이상분석: Array 비교 유전체 보합법)

  • Cho, Yoon-Hee;Park, Soo-Yeun;Lee, Dong-Wook;Kim, Han-Su;Lee, Ja-Hyun;Park, Hae-Sang;Chung, Sung-Min
    • Korean Journal of Head & Neck Oncology
    • /
    • v.24 no.2
    • /
    • pp.155-161
    • /
    • 2008
  • Head and neck squamous cell carcinoma(HNSCC) still has poor outcome, and laryngeal cancer is the most frequent subtype of HNSCC. Therefore, there is a need to develop novel treatments to improve the outcome of patients with HNSCC. It is critical to gain further understanding on the molecular and chromosomal alteration of HNSCC to identify novel therapeutic targets but genetic etiology of squamous cell carcinoma of the larynx is so complex that target genes have not yet been clearly identified. Array based CGH(array-CGH) allows investigation of general changes in target oncogenes and tumor suppressor genes, which should, in turn, lead to a better understanding of the cancer process. In this study, We used genomic wide array-CGH in tissue specimens to map genomic alterations found in laryngeal squamous cell carcinomas. As results, gains of MAP2, EPHA3, EVI1, LOC389174, NAALADL2, USP47, CTDP1, MASP1, AHRR, and KCNQ5, with losses of SRRM1L, ANKRD19, FLJ39303, ZNF141, DSCAM, GPR27, PROK2, ARPP-21, and B3GAT1 were observed frequently in laryngeal squamous cell carcinoma tissue specimens. These data about the patterns of genomic alterations could be a basic step for understanding more detailed genetic events in the carcinogenesis and also provide information for diagnosis and treatment in laryngeal squamous cell carcinoma. The high resolution of array-CGH combined with human genome database would give a chance to find out possible target genes which were gained or lost clones.